Hyperon Spectroscopy Status Report

Mar 8, 2017 | Albrecht Gillitzer, IKP Forschungszentrum Jülich

PANDA Collaboration Meeting 17/1, GSI Darmstadt, March 6-10, 2017

Items

- I. Requirements to FTS detectors
- II. Modified EMC acceptance
- III. Fitting decay tree with longlived charged particles $(\Xi^{-}, \Omega^{-}, \Sigma^{\pm})$
- IV. First results on simulation & analysis of $\bar{p}p \rightarrow \Xi^- \bar{\Xi}^+ \pi^0$

Part I: Required Completeness of FTS

- 4.4 GeV/c $\bar{p}p \rightarrow \bar{\Xi}^+ \Xi (1820)^- \rightarrow \bar{\Xi}^+ \Lambda K^- \rightarrow \bar{p}\pi^+ \pi^+ p \pi^- K^-$
- $\sqrt{s} \sqrt{s_{\text{thr}}} = 52 \text{ MeV}$
- full sim chain for 400000 events, available for analysis
- analysis of sim_complete.root to get detector ,points'
- analysis #1: combined MCTrack & FTSPoint information with focus on hit distribution on the 6 FTS planes
- analysis #2: combined MCTrack & MVDPoint, STTPoint, GEMPoint, FTSPoint information, focus on overall hit distribution

Hits in Subdetectors

particle	N _{MVD}	N _{STT}	N _{GEM}	N _{FTS}
	= 0	= 0	= 0	= 0
	>= 3	>= 3	>= 3	>= 3
$ar{p}$	0.395	0.666	0.118	0.570
	0.158	0.266	0.836	0.429
p	0.210	0.354	0.131	0.777
	0.449	0.588	0.769	0.222
К-	0.037	0.256	0.660	0.944
	0.860	0.720	0.260	0.055
$\pi^+{}_1$	0.110	0.248	0.289	0.826
	0.526	0.732	0.602	0.171
$\pi^+{}_2$	0.368	0.325	0.194	0.680
	0.189	0.647	0.742	0.315
π^-	0.212	0.332	0.245	0.721
	0.432	0.645	0.663	0.275

Hits in FTS Planes

FTS-1 - 6: numbers are in % of total number of generated particles

particle	F _{FTS-1}	F _{FTS-2}	F _{FTS-3}	F _{FTS-4}	F _{FTS-5}	F _{FTS-6}	F ₆ / F ₁
$ar{p}$	41.9	41.9	41.1	40.9	40.7	40.3	0.960
p	21.6	21.4	21.0	21.0	20.9	20.7	0.959
K^{-}	5.43	5.16	4.75	4.55	3.92	3.77	0.694
$\pi^+{}_1$	16.8	14.6	12.1	11.3	9.27	8.93	0.533
$\pi^+{}_2$	30.3	26.9	21.5	19.8	14.7	13.9	0.458
π^-	26.0	23.3	18.7	17.2	12.3	11.5	0.441

Summary Part I

- 40% of \bar{p} have no hit in MVD, and 67% of \bar{p} no hit in STT.
- except for K⁻, all particles have high probability to hit the GEM detector.
- except for K^- (5%), the probability to hit the FTS is between 17% (π_1^+) and 42% (\bar{p}) .
- if within the FTS acceptance, the transmission probability to FTS-6 is very high for p and \bar{p} (96%), whereas losses are ~50% for pions.
- p and \bar{p} do not extend the full x range of FTS-5,6

Part II: Modified EMC Acceptance

- Discussion to shift BWEC by 5 cm upstream → gap between Barrel and BWEC
- Discussion to remove the innermost layer of crystals \rightarrow reduced θ_{max}
- > Gap from $\theta = 142.0^{\circ}$ to $\theta = 151.2^{\circ}$, $\theta_{\text{max}} = 167.4^{\circ} \rightarrow 165.9^{\circ}$
- Hyperon spectroscopy also needs to measure decay modes with neutrals: $\Xi^{*-} \rightarrow \pi^0 \pi^0, \Xi^- \pi^0 \pi^0, \Xi^- \eta$
- Photon detection is important !

Losses for selected channels

final state	p [GeV/c]	acc _{old} [%]	acc _{new} [%]	rel. loss[%]	
$\Xi^-\overline{\Xi}^+\pi^0$	4.6	95.2	95.0	0.25	
	5.0	95.0	94.8	0.23	
$\Xi^-\overline{\Xi}^+\pi^0\pi^0$	4.6	90.6	90.1	0.49	
	5.0	90.2	89.8	0.45	
	5.5	89.6	89.2	0.42	
$\Xi^-\overline{\Xi}^+\eta,\eta ightarrow 2\gamma$	5.3	94.8	94.6	0.21	
	6.0	94.4	94.2	0.19	
	7.0	93.7	93.6	0.16	

Summary Part II

 The acceptance loss caused by shifting the BWEC and removing the innermost crystal layer for the selected channels *is marginal* (<1%)

Part III: Longlived Charged Particles in EvtGen

- signal events usually generated by EvtGen up to the final state of the decay tree
- decay point of long-lived charged particles such as ±⁻ is chosen along a straight flight path
- in reconstruction of initial $\bar{p}p$ system, Ξ^- and $\bar{\Xi}^+$ are back propagated along a helix trajectory \rightarrow no common vertex, different relative momenta
- > the MC generated decay tree is inconsistent with initial $\bar{p}p$ 4-momentum !

Possible Solution

- stop EvtGen at production of Ξ[−] and Ξ⁺ and let them propagate and decay by GEANT3/4
 - either simulate all decay modes, or
 - modify the physics table of GEANT
- apply a correction matrix to transform position and momentum components at E decay and downstream from "straight" to "helix"
- switch off the charge of Ξ^- and $\overline{\Xi}^+$ in vertex and kinematic fitters (I don't like this)

Summary Part III

 This problem must be solved or proven that the error is marginal (which I don't believe)

Part IV: Simulation of $\overline{p}p \rightarrow \Xi^-\overline{\Xi}^+\pi^0$

- 4.6 GeV/c $\bar{p}p \rightarrow \Xi^- \overline{\Xi}^+ \pi^0$ (PHSP)
- 2.10⁵ events simulated
- preliminary analysis of 1.10⁵ events

- focus on reconstruction efficiency and momentum & position resolution
- charged and composite particles: MC truth matched (correct PID, correct mother)
- photons: include neutral candidates whose mother is a photon and whose grandmother is pbarpSystem

Reconstruction Efficiencies

reconstruction efficiencies in % :

p	\overline{p}	π^-	π^+	π^0	Λ	$\overline{\Lambda}$	Ξ-	$\overline{\Xi}^+$	$\overline{p}p$
83.2	80.0	81.9	81.8	71.8	46.3	44.0	30.4	28.7	4.6

- note:
 - Ideal tracking, no condition on #hits yet
 - ideal PID
 - MC truth matching (correct mother)
- KinVtxFitter \rightarrow vertex, KinFitter \rightarrow M, 4CFitter \rightarrow initial p4
- composite particles: significant loss due to mass & probability cut

 4C fitter does not conserve masses of composite particles in decay tree

Summary Part IV

- 10⁵ events of $\bar{p}p \rightarrow \Xi^- \bar{\Xi}^+ \pi^0$ analyzed, results still very preliminary
- problems in vertex and kinematic fitting of complex decay tree including neutral particles:
 - inappropriate usage
 - improper functionality
- significant contribution of e⁺, e⁻ in neutral candidates to π⁰ yield (~44% → ~72%)
- to do: test Decay Tree Fitter, add required #hits per track, realistic PID