

Particle Identification with Disc DIRC at PANDA

<u>Mustafa Schmidt</u>, Simon Bodenschatz, Michael Düren, Erik Etzelmüller, Klaus Föhl, Avetik Hayrapetyan, Oliver Merle, Julian Rieke

March 7, 2017

Outline

- 2 Geometry Studies
- 3 Track Reconstruction
- 4 Benchmark Channel Analysis
- 5 Testbeam Analysis

Reconstruction & PID

Full Simulation Chain

Hitpattern Matching

$$\ln \mathcal{L} = \sum_{i=0}^{N} \left(\ln \mathcal{G}(z_i | z_{pred,i}; \sigma_z) + \ln \mathcal{G}(t_i | t_{pred,i}; \sigma_t) \right)$$
(1)

Event Display with Photon Reflections

Assumed parameters for event based simulations:

- Surface roughness: $\sigma = 1.0 \text{ nm}$
- Time resolution: 21 ps
- Pixel dead time: 20 ns
- TDC binning: 50 ps
- Position resolution: $\sigma_{x,y} = 1.5 \text{ mm}$
- Momentum resolution: $\sigma_{p_x,p_y,p_z} = 10 \text{ MeV/c}$
- Spatial cut: $3\sigma_{\theta_c}$ (calculated SPR)
- Reconstruction time cut: 1.0 ns

Parameters: $\theta = 12^{\circ}$, $\phi = 45^{\circ}$, p = 4 GeV/c, 500 Pions and Kaons

Blue photon cathode, air gap, no mirror, long-pass filter

Photon yield of Monte-Carlo simulations before (left) and after (right) application of PDE:

Blue photo cathode with 80 % collection efficiency.

Likelihood Distribution

Geometry Studies

New Detector Geometry

New geometry script with parameterized design including optical grease and air gap

Simulated and Reconstructed Hitpattern

φ [rad] 0.7 Data Points + 0.65 Linear Fit 0.6 0.55 0.5 0.45 0.4 0.35 20 40 60 80 100 n Pixel #

MC FEL Calibration

Analysis Summary

Preliminary Studies for TDR

Actual values for different geometries of Disc DIRC:

	e : 1		9 ROMs					8 ROMs							
digitization v	Sin	Simulation ►		mirror			-			-			air gap		
Blue-PC	365-460	80% CE	20,61	х	4,08										
	LP filter	65% CE	23,01	х	3,75	21,59	х	3,67	18,72	х	3,77	17,51	х	3,54	
Green-PC	no filter	65% CE	32,40	х	4,04	30,9	х	3,99	26,78	х	4,09	24,59	х	3,88	
	LP filter	65% CE	29,78	х	4,03	28,27	х	4,04	24,57	х	4,2	22,2	х	3,84	
			n		s.p.										
Particle angle		$\theta = 16^{\circ}, \varphi = 45^{\circ}$													
Generated Wavelengths		300-800 nm													
Quantities		Number of Photons													
S		Separation Power													

Misidentification

Probability for misidentification with separation power *n*:

$$p(\pi|K) = \frac{1}{2} \left(1 - \operatorname{erf}\left(\frac{n}{2\sqrt{2}}\right) \right)$$
(2)

15/3

Track Reconstruction

Vertex Reconstruction

Position and momenta at last tracking vertex:

Momentum at last tracking vertex:

Mustafa Schmidt

Updates of DISC Software

Helix Propagator

Important Helix Parameters:

- Helix center: x_0, y_0, z_0
- Helix radius: $\rho = R_{curv}$
- Impact parameter: *a*₀
- \bullet Helix phase: λ or ϕ

Position Reconstruction

Transverse momentum:

$$p_T = \sqrt{p_x^2 + p_y^2}$$

Calculation of curvature from magnetic field:

$$\rho[m] = \frac{p_T[\text{GeV}]}{0.3B[\text{T}]}$$

Center of helix:

$$x_0 = x + Q\rho \cos(\alpha - \frac{1}{2}Q\pi) = x + Q\rho \sin\alpha$$

$$y_0 = y + Q\rho \sin(\alpha - \frac{1}{2}Q\pi) = y - Q\rho \cos\alpha$$

$$z_0 = z - 2\rho \cot\theta \arcsin\left(\sqrt{\frac{x^2 + y^2 - a_0^2}{4\rho^2 + 4Qa_0\rho}}\right)$$

with

$$\cos \alpha = \frac{p_x}{p_T}$$
 and $\sin \alpha = \frac{p_y}{p_T}$

Mustafa Schmidt

Updates of DISC Software

Position Reconstruction

Transverse impact parameter:

$$\mathsf{a}_0 = Q\left(\sqrt{x_0^2 + x_0^2} - \rho\right)$$

Initial phase:

$$\phi_0 = \arctan\left(rac{y_0}{x_0}
ight) + rac{1}{2}Q\pi$$

Calculation of phase λ :

$$z(\lambda) = z_0 +
ho\lambda\cot heta \Rightarrow \lambda = rac{z(\lambda) - z_0}{
ho\lambda\cot heta}$$

Propagating helix with equations of motion:

1

$$\begin{aligned} x'(\lambda) &= x_0 + Q\rho \cos(Q\lambda - \phi_0) \\ y'(\lambda) &= y_0 + Q\rho \sin(Q\lambda - \phi_0) \end{aligned}$$

Reconstruction Results

Position and polar angle resolution on surface of raudiator disk as funciton of particle momentum for $\theta = 15^{\circ}$ and $0^{\circ} < \phi < 360^{\circ}$:

Error bars: Error of mean value Yellow band: Resolution Offset calibration of polar angle with polynomal fit of 2nd degree

Benchmark Channel Analysis

Decay of $f_0(1500)$ in EvtGen decay file:									
Decay f_0(1500)									
0.019000000 eta eta'									
0.0510000	000 et	ta	eta						
0.1410	pi0	pi0	pi0	pi0		PHSP;			
0.3540	pi+	pi-	pi+	pi-		PHSP;			
0.2330	pi+	pi-				PHSP;			
0.1160	pi0	pi0				PHSP;			
0.0430	K+	K-				PHSP;			
0.0215	K_SO	K_S	0			PHSP;			
0.0215	K_LO	K_L	0			PHSP;			
Enddecay									

Benchmark Channel: $p\bar{p} \rightarrow f_0 \pi^0 \rightarrow \pi^0 K^+ K_-$

Physics Channel Analysis

Glueball candidate $f_0(1500)$ decay into K^+K^- :

24 / 36

Azimuth Angle Distribution

Beam momentum: 6.5 Gev/c, polar angle cut: 5° $<\theta<22^\circ$

Very few events with pileup problems

Azimuth Angle Distribution

Azimuth angle distribution after Lorentz boost into rest frame:

Mustafa Schmidt

Updates of DISC Software

Invariant mass calculated from Monte-Carlo truth data:

f₀(1500) Invariant Mass

• Likelihood value equal to value of PDF:

$$\mathcal{L}(\theta|x) = f(x;\theta) \tag{3}$$

• Bayesian Approach:

$$p(\theta|x) = \frac{\mathcal{L}(\theta|x)\pi(\theta)}{\int \mathcal{L}(\theta'|x)\pi(\theta')d\theta'}$$
(4)

• Following the probability for finding particle *k* (a-priory propbability set to 1):

$$p(k) = \frac{\prod_i \mathcal{L}_i(k)}{\sum_j \prod_i \mathcal{L}_i(j)}$$
(5)

 $i = 0 \dots N$ for N subdetectors $j = e, \mu, \pi, K, p$

Probability Distributions

Probability Distributions including for all detectors:

Probability Distributions

Mustafa Schmidt Updates of DISC Software

Reconstructed mass from kinematics of K^+/K^- decay channel:

$$m_{f_0} = \sqrt{(E_{K^+} + E_{K^-})^2 + (ec{p}_{K^+} + ec{p}_{K^-})^2}$$

with combined likelihood value and PID cut at 50%:

Approx. factor 2 in reconstruction efficiency

Mass reconstruction with signle Kaon in Disc DIRC

Higher statistics than events \Rightarrow most likely ghost tracks

Testbeam Analysis

2016 DISC DIRC PROTOTYPE available setup

05.10.2016

view downstream

Time Spectrum

Time spectrum for all 3 FELs during one run

Time cut between 236 and 243 ns

Assumption: 1 photon \rightarrow approx 1.4 photo electrons Cluster size cumulated for all events in one FEL with linear (left) and log scale (right):

Status until now: Different result in testbeam analysis because of background and dark counts \rightarrow Time cuts necessary

Photon Yield

Number of hits without (left) and with (right) rejecting

