Status of the CERN 2016 Beam Test Analysis

Roman Dzhygadlo, Panda Cherenkov Group

- prototype test at CERN 2016
- data selection and calibration
- photon yield
- TI reconstruction results
- summary

PANDA meeting 03.17

Cern 2016 Prototype Test

- main goal: validate the PID performance of the plate design
- CERN T9 area
- beam type: protons and pions
- beam momentum: 8, 7, 6, 5, 4, 3 GeV/c
- TOF PID
- 30 degree prism as expansion volume => 9 MCP-PMTs (vs 15 last year)
- different configurations of the DIRC prototype (most of the data are with plate)
- different DIRC prototype angles

CERN 2016 DIRC Prototype Photo

Cern 2016 DIRC Prototype Photo

TOF PID

Fine Time Calibration

tdc 0x2005, chain 1, lch 10, ch 266, mcp 4 pix 5

Time = epoch time + coarse time + fine time

stable with time

Example of the electronic time resolution:

07.03.17

Roman Dzhygadlo, PANDA Cherenkov Group

Time Walk Correction of the DIRC ch.

Roman Dzhygadlo, PANDA Cherenkov Group

Time Resolution of the PILAS Runs

mean = 186 ps

Roman Dzhygadlo, PANDA Cherenkov Group

Hit Patterns: Plate with Cyl. Lens

Hit Patterns: Plate w/o Focusing

Pions vs Protons

Roman Dzhygadlo, PANDA Cherenkov Group

Propagation Time of the Cherenkov Ph.

15/26

Detected Photon Yield @ 25 degree

Roman Dzhygadlo, PANDA Cherenkov Group

Detected Photon Yield

Detected Photon Yield. Geant4 sim

Loss of the photons in the lens:

Time Imaging Reconstruction. PDFs

beam data with plate @ 7 GeV/c @ 25 degree

Time Imaging Reconstruction

beam data with plate @ 7 GeV/c @ 25 degree

$$N_{\rm sep} = \frac{|\mu_1 - \mu_2|}{0.5(\sigma_1 + \sigma_2)}$$

Roman Dzhygadlo, PANDA Cherenkov Group

Separation Power Map

Separation Power Map

Separation Power Table

for 7 GeV/c momentum

angle [º]	π/p sep. beam data [s.d]	π/p sep. simulation [s.d]	π/K sep. PANDA sim [s.d]			
25	3.1	3.1	9.8			
33	2.6	2.7	6.9			
112	1.8	1.4	5.4			
125	2.3	1.9	6.0			
140 Drolimin	2.0	2.3	7.2			
Premimary						

Separation Power Table

for 7 GeV/c momentum

07.03.17

Roman Dzhygadlo, PANDA Cherenkov Group

24/26

F S

Summary and Outlook

- Test beam was successful (recorded >0.5B triggers for different prototype config.)
- Achieved time resolution of about 190 ps is better than last year but still significantly worse than 100 ps goal
- Improved pi/p separation compared to 2015
- The design with cylindrical lens performs better (despite the lens was not matching prism)
- Good agreement between data and simulations indicates that the plate radiator with the 3-layer cylindrical lens will reach PANDA PID goal if the time resolution < 150ps

Thank you for the attention

Separation Power Table

for 7 GeV/c momentum

angle [°]	π/p sep. beam data [s.d]	π/p sep. simulation [s.d]	π/p sep. PANDA design sim	π/K sep. PANDA sim [s.d]		
25	3.1	3.1	4.4	9.8		
33	2.6	2.7	3.8	6.9		
112	1.8	1.4	2.7	5.4		
125	2.3	1.9	3.2	6.0		
140 Drolimin	2.0	2.3	3.7	7.2		
150 ps vs. 100 ps						

2 mrad vs. 1-2 mrad

Threshold Floating

Threshold difference after few hours of data taking:

- floating in the range of [-1,+1] mV
- the data were taken with 0.5-2 mV offset to the threshold value due to low amplitude signals

Significant impact on recorded hit multiplicity

