Testbeam with the latest Disc DIRC prototype

Klaus Föhl (on behalf of Julian Rieke)

PID session - PANDA meeting at GSI

7 March 2017

- PANDA Endcap Disc DIRC (EDD) and prototype
- Prototype optical components
- Testbeam area T24 at DESY
- Experimental set-up
- DAQ system based on TOFPET ASIC
- First testbeam results

Testbeam with the latest Disc DIRC prototype

Münster \mathbf{C} Draft for D

<u>Julian Rieke</u>, Simon Bodenschatz, Erik Etzelmüller, Michael Düren, Klaus Föhl, Avetik Hayrapetyan, Kristof Kreutzfeldt, and Mustafa Schmidt for the PANDA collaboration

II. Physikalisches Institut, Universität Gießen, Germany

Münster 2017 – HK 44.4 DPG Frühjahrstagung / Spring Meeting 30 March 2017

EDD in PANDA

components Prototype

EDD Prototype

Prototype partially assembled. View from ROM assembly side, Upstream side in DESY 2016 test.

Beam characteristics

Spatial uncertainty of e^- on radiator	$\approx 5\mathrm{mm}$
Angular uncertainty of e^-	$\approx 1\mathrm{mrad}$
Beam momentum	$3{ m GeV/c}$
Size of primary collimator	$5 \times 5 \mathrm{mm}$
Size of secondary collimator	$15 \times 15 \mathrm{mm}$

Area Testbeam at DESY – Teststrahl 24

Experimental set-up - schematic

Experimental set-up - in situ

Experimental set-up – schematic 2

DAQ using TOFPET readout

- High density coaxial cables
- Feed-through and adapter PCBs
- TOFPET boards A and board D

Beam positioning on radiator

Time and space patterns

time calibrated with laser pulser

Figure 6.9: The hitpattern of the Cherenkov photon after applying timecuts.

- x = 453.9 mm, y = 170.5 mm, tilt 14 degrees
- > 1,000,000 triggers in 600 seconds

Poisson fit to multiplicity histogram

Spatial resolutions

10

20

30

40

50

60

70

80

90 Pixel

- FEL 0 : reduced light transmission
- FEL 1: σ = 1.73 pixel = 0.86 mm
 = 6.1 mrad
- FEL 2: misorientation of 1.5 mrad

N.B. once mounted, an individual FEL cannot be adjusted, only the full ROM with its 3 FELs inside

Relative timing between pixels

Time resolution obtained from time differences between two directly illuminated pixels.

High resolution y scan

Figure 6.20: The high resolution y scan simulates a fully equipped radiator. The resulting structure is often called *Cherenkov Smile*.

Summary

- October 2016 test beam at DESY
- One calendar week of good test beam data
- Photon statistics look reasonable
 - Detailed understanding of pixel and cluster numbers need detector simulations
- Position resolution $\sigma = 6$ mrad
 - Full apparatus wavelength range, no filters used
 - Resolution dominated by chromatic dispersion
 - FEL2 in addition blurred by angle misorientation
- Timing between pixels $\sigma = 0.46$ ns
- Simulations to follow

Additional slides

Figure 6.19: The angle scan. A rotation of the prototype translates into a linear displacement of the Cherenkov peak.

Figure 6.21: Part 1 of the XY Scan shows the smallest curvature.

FEL O

Hits/Trigger

Backup and quarry slides

- Hadron spectroscopy
 - Charmonium spectroscopy
 - Gluonic excitations (hybrids, glueballs)
- Charmed hadrons in nuclear matter
- Double Λ -Hypernuclei

- pp interactions
- cooled beam
- p=1.5-15GeV/c
- high interaction • rate (~20MHz)

First Particle Identification with a Disc DIRC Detector

<u>Klaus Föhl</u>, Michael Düren, Avetik Hayrapetyan, Benno Kröck, Yong Liu, Oliver Merle, Daniel Mühlheim, Julian Rieke

AG Düren, II. Physikalisches Institut, Universität Gießen

VCI 2013

The 13th Vienna Conference on Instrumentation 13 February 2013

Schematic set-up

EDD in PANDA

Spatial uncertainty of e^- on radiator	$\approx 5\mathrm{mm}$
Angular uncertainty of e^-	$\approx 1\mathrm{mrad}$
Beam momentum	$3{ m GeV/c}$
Size of primary collimator	$5 \times 5 \mathrm{mm}$
Size of secondary collimator	$15 \times 15 \mathrm{mm}$

ROM and FEL

Raw data – not yet time-aligned

