On the phase diagram of QCD

Jan M. Pawlowski Universität Heidelberg & ExtreMe Matter Institute

Quark-Gluon-Plasma meets Cold Atoms - Episode II Riezlern, August 4th 2009

Outline

- Phase diagram of QCD: a short introduction
 - Confinement-Deconfinement phase transition
 - Chiral symmetry breaking
- Phase diagram of QCD: results
 - Quark confinement & chiral symmetry breaking
 - Chiral phase structure at finite density
- Summary and outlook

Phase diagram of QCD: a short introduction

QCD QCD Cold Atoms

Energy density

string breaking at $r \approx 1.1 fm$

Order parameter $\sim '\langle q \rangle'$ $\Phi = e^{-\frac{1}{2}\beta F_{q\bar{q}}(\infty)}$ • Confinement: $\Phi = 0$

• Deconfinement: $\Phi \neq 0$

Order parameter $\sim \langle q \rangle'$ $\Phi = e^{-\frac{1}{2}\beta F_{q\bar{q}}(\infty)}$ • Confinement: $\Phi = 0$ • Deconfinement: $\Phi \neq 0$ Mechanism? not fully resolved

G	Generation	first	second	third	Charge
N	lass [MeV]	1.5-4	1150-1350	170×10 ³	
C	Quark	u	С	t	$\frac{2}{3}$
C	Quark	d	S	b	$-\frac{1}{3}$
N	lass [MeV]	4-8	80-130	(4.1-4.4)×10 ³	

 \sim chiral symmetry breaking: $\Delta m \approx 400 MeV$

2 light flavours, one heavy flavour 2 + 1

Generation	first	second	third	Charge
Mass [MeV]	1.5-4	1150-1350	170×10 ³	
Quark	u	С	t	$\frac{2}{3}$
Quark	d	S	b	$-\frac{1}{3}$
Mass [MeV]	4-8	80-130	(4.1-4.4)×10 ³	

chiral symmetry

chiral symmetry breaking

mass term: $\left< \bar{q}q \right> \bar{q}q$

Generation	first	second	third	Charge
Mass [MeV]	1.5-4	1150-1350	170×10 ³	
Quark	u	С	t	$\frac{2}{3}$
Quark	d	S	b	$-\frac{1}{3}$
Mass [MeV]	4-8	80-130	(4.1-4.4)×10 ³	

chiral symmetry breaking: $\Delta m \approx 400 MeV$

2 light flavours, one heavy flavour 2 + 1

Generation	first	second	third	Charge
Mass [MeV]	1.5-4	1150-1350	170×10 ³	
Quark	u	С	t	$\frac{2}{3}$
Quark	d	S	b	$-\frac{1}{3}$
Mass [MeV]	4-8	80-130	(4.1-4.4)×10 ³	

$$\begin{array}{c} \overbrace{q}{g} & \overbrace{q}{g} & \xrightarrow{g}{g} &$$

mass term: $\langle \bar{q}q \rangle \, \bar{q}q$

Order parameter

$$\sigma = \langle \bar{q}q \rangle$$

chiral condensate

• chiral symmetry: $\sigma=0$

• symmetry breaking: $\sigma \neq 0$

Quark-Gluon-Plasma meets Cold Atoms

Quark-Gluon-Plasma meets Cold Atoms

Phase diagram of QCD: Results

Quark confinement & chiral symmetry breaking

Continuum Methods

The Functional RG

- Introduction to Functional RG flows & some results in QCD (talks)
 - Integrals from differential equations: The FRG-idea in 0+0-dimensions <u>http://www.thphys.uni-heidelberg.de/~pawlowsk/NPgauge/bonus/idea.pdf</u>
 - Introduction to the Functional RG & QCD flows <u>http://www.thphys.uni-heidelberg.de/~pawlowsk/talks/graz.pdf</u>
 - Confinement & chiral symmetry breaking from Functional Methods <u>http://www.thphys.uni-heidelberg.de/~pawlowsk/talks/berlin08.pdf</u>

Continuum methods

Continuum methods

Continuum methods

 $T_c \simeq 284 \pm 10 \mathrm{MeV}$

 $T_c/\sqrt{\sigma} = 0.646 \pm 0.023$ lattice: $T_c/\sqrt{\sigma} = .646$

Continuum methods

 $T_c \simeq 284 \pm 10 \mathrm{MeV}$

 $T_c/\sqrt{\sigma} = 0.646 \pm 0.023$ lattice: $T_c/\sqrt{\sigma} = .646$

Continuum methods

Dual order parameter

Lattice & Continuum QCD

Dual order parameter

Continuum methods (Functional RG-flows)

Continuum methods

Continuum methods

Braun, Haas, Marhauser, JMP '09

Continuum methods & lattice

Continuum methods

Continuum methods & lattice

Chiral phase structure at finite density

Polyakov - Quark-Meson model

• Phase diagram of QCD

Dynamical hadronisation

QCD flows dynamically into hadronic effective theories

• Next steps: real chemical potential & 2+1 flavours

work in progress

- Phase diagram of QCD
 - Confinement & chiral symmetry breaking at finite temperature
 - Dynamical hadronisation
 - critical point and phase lines in effective theories

- Phase diagram of QCD
 - Confinement & chiral symmetry breaking at finite temperature
 - Dynamical hadronisation
 - critical point and phase lines in effective theories

- Phase diagram of QCD
 - Confinement & chiral symmetry breaking at finite temperature
 - Dynamical hadronisation
 - critical point and phase lines in effective theories
 - Hadronic properties
 - non-equilibrium physics
 - QGP meets Cold Atoms

Additional material Chiral phase structure at finite density

Chiral phase diagram

Karsch et al. '03

Critical point

PNJL: Meisinger et al '03, Fukushima '03, Ratti et al '06, Megias et al '06, Sasaki et al '06, ...

M. Stephanov '07

Critical point

Strategy: tune m_q for 2nd-order P.T. at $\mu = 0$, then turn on infinitesimal μ Does the transition become 1rst-order (left) or crossover (right)? Answer: little change (\rightarrow surface almost vertical)

2007: measure
$$\delta B_4$$
 under $\delta \mu^2 \rightarrow \text{crossover}$: $\frac{m_c(\mu)}{m_c(0)} = 1 - 3.3(5) \left(\frac{\mu}{\pi T}\right)^2$

de Forcrand et al '07

Polyakov - Quark-Meson model

Schaefer, JMP, Wambach '07

lattice data taken from Ali Khan et al. (CP-PACS), Phys. Rev. D 64 (2001)

Polyakov - Quark-Meson model

Polyakov - Quark-Meson model

