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Motivation

Research on ultracold atoms addresses many- and few-body phenomena

Ketterle group, MIT, 1995

Few-body physics: One important issue is the stability of ultracold atomic gases
(losses → recombination collisions)
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Recombination Processes

Three-body recombination leads to losses

ṅ = −K3n3

Recombination process is suppressed for two-component Fermi gases due to Pauli
blocking

This talk: What is the stability of a three-component Fermi gas?
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Theoretical Background

(Quantum) statistical physics: The partition function

Zqst = Tr eβH[ϕ̂,µ] =

∫
Dϕe−S[ϕ,µ,β] =

∫
Dϕe−

∫ β
0 dτL[ϕ,µ]

“standard textbook QFT”: computation of cross sections etc. from

Zqft [J] =

∫
Dϕe−S[ϕ,T=0,n=0]+

∫
Jϕ
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0 dτL[ϕ,µ]

“standard textbook QFT”: computation of cross sections etc. from

Zqft [J] =

∫
Dϕe−S[ϕ,T=0,n=0]+

∫
Jϕ

Zqst , Zqft : two sides of the same coin

In the “vacuum limit” (n = 0, T = 0) Zqst has to be equal to Zqft .
Many-body calculations have to recover the few-body limit correctly
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The Functional Renormalization Group (Talk by S. Floerchinger)

Z [J] =
∫

Λ
Dϕ e−S[ϕ]+

∫
Jϕ

The computation is difficult.

Introduce improved (Wilsonian) idea of momentum
shell-wise integration by adding regulator Rk

Legendre transformation: effective flowing action

Γk [φ] ∼ − lnZk [J] +
∫
Jφ

Γk=0[φ] =

{
Γ full (vacuum) effective action
βΩ grand canonical partition function

The Wetterich Equation

∂kΓk =
1
2
Tr

[
1

Γ
(2)
k + Rk

∂kRk

]
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Stability of a three-component Fermi Gas

Crucial is the calculation of the bound state energy spectrum

I The scattering cross section is enhanced by presence of bound states (like in particle
physics)

→ resonance if incoming particle energy is
fits bound state energy

Losses may be enhanced due to decay through these bound states

Of special interest in the three-component gas: Existence of a three-body bound
state (not prohibited by Pauli blocking)
→ Efimov physics
→ Phase of trions (S. Floerchinger, RS, S. Moroz, C. Wetterich, PRA 79, 013603 (2009))
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Reminder of Stefan’s talk

Truncation for the SU(3) symmetric three-component Fermi gas:

Γk =

∫
x
ψ†(∂τ −∆ + Eψ)ψ + φ†(Aφ(∂τ −∆/2) + m2

φ)φ

+χ∗(Aχ(∂τ −∆/3) + m2
χ)χ+

h
2
εijk(φ∗i ψjψk + φiψ

∗
kψ
∗
j )

+g(χ∗ψiφi − χψ∗i φ∗i ) + λφψ(φ∗i ψ
∗
i φjψj )

Cannot be exact, as the full momentum dependence of all couplings is not
considered. But ’many-body optimized’ (inclusion of trion)

The poles in the particles’ Greens
functions are connected to bound states
→ we have to calculate the zeros of
m2
φ[Eψ] and m2

χ[Eψ]
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Results

S. Floerchinger, RS, S. Moroz, C. Wetterich, PRA 79, 013603
(2009)

Universal ratio between trimer levels

E (n+1)
T

E (n)
T

= e−
2π
s0

s0 = 1.006 (exact)
Moroz, Floerchinger, RS, Wetterich PRA 79, 042705

(2009)

s0 = 0.82 (truncation)
s0 = 0.96 (impr. truncation)

overall energy degeneracy position
depends on three body parameter:
cutoff scale Λ (Braaten, Hammer: Λ∗)

Richard Schmidt (TU München) Few-body Physics with Ultracold Fermi Gases August 7, 2009 9 / 21



Results

S. Floerchinger, RS, S. Moroz, C. Wetterich, PRA 79, 013603
(2009)

Universal ratio between trimer levels

E (n+1)
T

E (n)
T

= e−
2π
s0

s0 = 1.006 (exact)
Moroz, Floerchinger, RS, Wetterich PRA 79, 042705

(2009)

s0 = 0.82 (truncation)
s0 = 0.96 (impr. truncation)

overall energy degeneracy position
depends on three body parameter:
cutoff scale Λ (Braaten, Hammer: Λ∗)

Richard Schmidt (TU München) Few-body Physics with Ultracold Fermi Gases August 7, 2009 9 / 21



Results

S. Floerchinger, RS, S. Moroz, C. Wetterich, PRA 79, 013603
(2009)

Universal ratio between trimer levels

E (n+1)
T

E (n)
T

= e−
2π
s0

s0 = 1.006 (exact)
Moroz, Floerchinger, RS, Wetterich PRA 79, 042705

(2009)

s0 = 0.82 (truncation)
s0 = 0.96 (impr. truncation)

overall energy degeneracy position
depends on three body parameter:
cutoff scale Λ (Braaten, Hammer: Λ∗)

Richard Schmidt (TU München) Few-body Physics with Ultracold Fermi Gases August 7, 2009 9 / 21



The case of the three-component 6Li Fermi Gas

Pairwise scattering length are not equal
(SU(3) symmetry broken)

Quite large and negative scattering
lengths

No losses in two-component system

Loss features in three-component
system

Three-body effect. Efimov states
crossing the atom threshold?
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The case of the three-component 6Li Fermi Gas

Pairwise scattering length are not equal
(SU(3) symmetry broken)

Quite large and negative scattering
lengths

No losses in two-component system

Loss features in three-component
system

Three-body effect. Efimov states
crossing the atom threshold?

T. Ottenstein et al. PRL 101, 203202 (2008)
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Adjusting the model

We generalize the SU(3) symmetric model

Γk =

∫
x
ψ†(∂τ −∆ + Eψ)ψ + φ†(Aφ(∂τ −∆/2) + m2

φ)φ

+χ∗(Aχ(∂τ −∆/3) + m2
χ)χ+

h
2
εijk(φ∗i ψjψk + φiψ

∗
kψ
∗
j )

+g(χ∗ψiφi − χψ∗i φ∗i ) + λφψ(φ∗i ψ
∗
i φjψj )

We are able to implement all different scattering lengths aij exactly by using
auxiliary boson exchange

aij = −
h2
φk

8πm2
φk(k = 0,Eψ = 0)

∼

The bosons (φ) do not represent the close by Feshbach molecules.
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Experimental Findings II

The quantitative measure of the three-body
loss is given by

ṅ = −K3n3

Guess:

Efimov trimer energy level (given by
m2
χ = 0) crosses threshold at resonance

positions

K3 loss features are due to a decay to
deeply bound dimers through
trimer-exchange process
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Trimer Energy Level

Trimer energy level ET = 3Eψ is given by condition m2
χ(Eψ) = 0

The degeneracy position m2
χ(Eψ = 0) = 0 can be tuned by adjusting the three-body

parameter Λ.

S. Floerchinger, RS, C. Wetterich PRA 79, 053633 (2009)
similar calculation: P. Naidon, M. Ueda, arXiv:0811.4086

Fitting the first resonance position we find the second at B = 500G
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Calculation of K3

For the evaluation of K3 we calculate

K3 ∝

∣∣∣∣∣∣
3∑

c=1

h̄c ḡc

m̄2
φc

1(
m̄2
χ − i Γχ

2

)
∣∣∣∣∣∣
2

We do not explicitly include the deeply bound states

For a rough estimate we introduce a decay width Γχ assumed to be constant
throughout the whole region, Γχ is fitted to the width of the first resonance
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Calculation of K3

similar calculation: E. Braaten, H.-W. Hammer, D. Kang, L. Platter, arXiv:0811.3578v1

broadness of second peak may be explained by a non-constant Γχ due to close-by
Feshbach dimers (talk by T. Lompe)

Conclusion

By the investigation of the 6Li system we were able to fix all necessary microscopic
couplings (two-body parameter: aij , three-body parameter: Λ)

Good starting point for many-body calculations exploring the (physical) phase diagram of
three-component Fermi gases.
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Effective field theory for four-body physics
Consider a system of identical bosons
Are there not only three-body bound Efimov states, but also four-body bound states?

Yes! Platter, Hammer, Meissner (2004) → question of universality.
2009: Stecher, D’Incao, Greene (2009)

Stecher, D’Incao, Greene, Nature Physics 5, 417-421 (2009) Ferlaino, Knoop, et al. PRL 102, 140401 (2009)

Stecher et al.: Calculation of lowest five sets of Trimer/Tetramers:
ET1
ETr

= 5.88 . . . 4.48 ET2
ETr

= 1.01
aT1
aTr

= 0.43 aT2
aTr

= 0.9

Universal tetramer state. But ratios obtained from lowest Tetramer levels

With the FRG: Calculation of the energy spectrum and especially:
Investigation of universality in the ’unitarity limit’ (a→∞, Eψ = 0)
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Idea
Three-body physics
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Idea
Three-body physics

→ RG limit cylce, universal number s0
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Idea
Three-body physics

Why cycle?
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Idea
Three-body physics

Dependence microscopic λAD(UV )?
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Idea
Three-body physics

Dependence microscopic λAD(UV )?
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Microscopic details really get ’washed out’
Is there similar behavior in the four-body sector?
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Model

Our truncation

Γk =

∫
p
ψ∗(iω + ~p2 − µ)ψ + φ∗(Aφ(iω +

~p2

2
) + mφ)φ+ h(φ∗ψψ + φψ∗ψ∗)

+ λADφ
∗ψ∗φψ

+ λφ(φ∗φ)2 + β(φ∗φ∗φψψ + φφφ∗ψ∗ψ∗) + γφ∗ψ∗ψ∗φψψ

λAD , λφ, β, γ assumed to be momentum-independent.

All other possible U(1) symmetric coupling terms have vanishing RG flows in
vacuum.

Tetramer (four-body bound) states appear as resonances in the four-body sector
couplings.
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Results I
Away from resonance

RS, S. Moroz (in preparation)

We do not find the second tetramer state
I no problem with the numerical resolution
I momentum dependencies in three- and four-body sector needed?
I We tried approximation with dynamical trimer field (Taylor expansion in iω + ~p/3 to

first order)
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Results II

We find

ET1

ETr
= 3.9 (5.88 . . . 4.48)

aT1

aTr
= 0.51 (0.43)

Universal region is reached within a few sets of levels
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Instead of a conclusion

The unitarity limit Eψ = 0, a→∞

3-body sector limit cycle

Conclusion

Approximation not sufficient for ’detection’ of second tetramer state

Still, we might learn about which momentum dependencies are crucial in n-body
physics

Field theoretical calculation possible in unitarity limit:
No additional four-body parameter ⇒ Universality
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