CBM-TRD Feature Extraction

CBM-TRD TDR Review

SPONSORED BY THE

05P15RFFC1

Cruz de Jesus García Chávez garcia@iri.uni-frankfurt.de

IRI - Goethe University Frankfurt am Main Prof. Dr. Udo Kebschull

The TRD Readout Concept

Main components:

- Front-End Electronics (FEE)
 - Conversion of TRD detector signals into discrete messages
 - Self-triggered
- Readout ConTroller (RCT)
 - Interface between FEE and data taking system
 - Communication to the Experiment Control System (ECS)
 - Timing and Flow Control system (TFC)
 - Feature Extraction
- First-Level Event Selection (FLES)
- Communication between the blocks is made by different data transport links (depending on the hardware used)

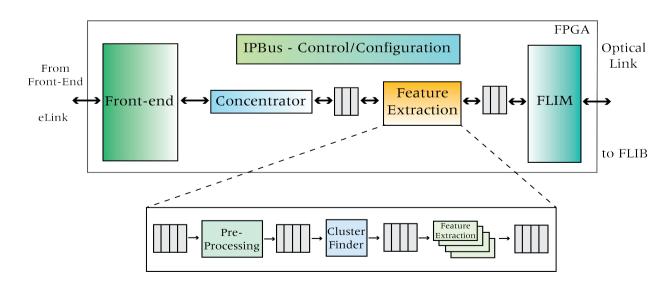
Schematic view of the TRD readout chain

The TRD Readout Proposal

- Based on the SPADIC v2.0 FEE
- AFCK as Readout controller

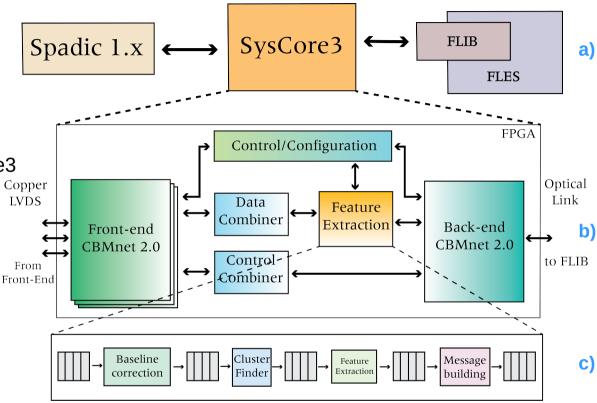
Data transport links:

- Between SPADIC 2.0 and AFCK → GBTx e-Link
- Between AFCK and FLIB/FLES → FLIM
 - Provides a data rate of 10GB/s
 - Data and control transport


TRD readout chain using the SPADIC v2.x ASIC and AFCK boards

The TRD Readout Proposal

- Front-End module GBTx e-Link logic
- Concentrator
 Gathers data streams from multiple Front-ends
- Feature Extraction
 Data pre-processing stage
- FLIM
 Data transport link to first level event selector
- IPBUS
 Control and configuration communication protocol



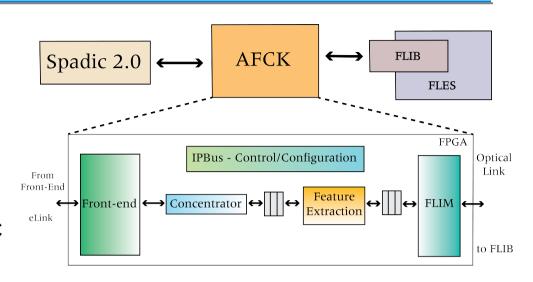
The TRD Readout Prototype

- Front-end electronics based on SPADIC 1.x ASIC
- Readout controller implemented on a SysCore3 FPGA development platform
 - Xilinx FPGA Spartan 6
 - Up to 3 SPADIC 1.x FEEs per SysCore3
- CBMnet 2.0 data transfer link
 - Used between FEE, RCT and FLIB
 - Data transfer rate of 4.8 Gbps
- Feature extraction stage implemented in the SysCore3

Algorithms:

- Total charge
- Time-over-threshold
- Centre of gravity

- a) TRD readout chain using the SPADIC v1.x ASIC and SysCore3 boards
- b) Detailed view of the SysCore3 firmware
- c) Detailed view of the feature extraction stage



Feature Extraction

Goals

- Data processing stage
- Deliver data merged based on hit-time and bandwidth reduced to the FLES
- Find and extract regions of interest from SPADIC hit messages

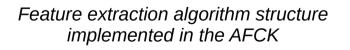
The TRD readout proposal with a detailed view of the AFCK firmware

Feature

extraction

Feature extraction requirements for CBM-TRD

Signal processing algorithms:


Baseline correction

from Front-End

Baseline

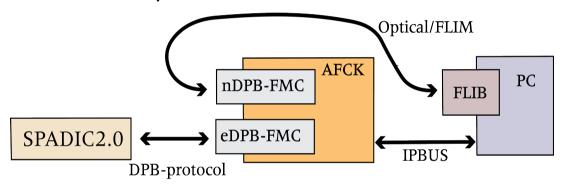
correction

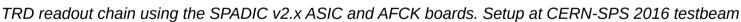
- Cluster finder
- Feature extraction from found clusters
- Message packing for transport to FLIB/FLES

Cluster

finder

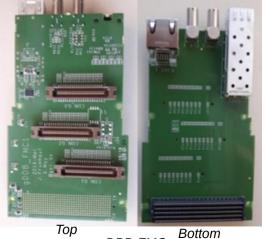
Message

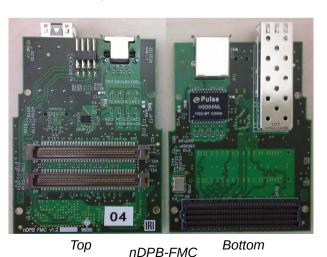

Generator


to FLES

The TRD Readout Proposal at CERN-SPS 2016 testbeam

Overview

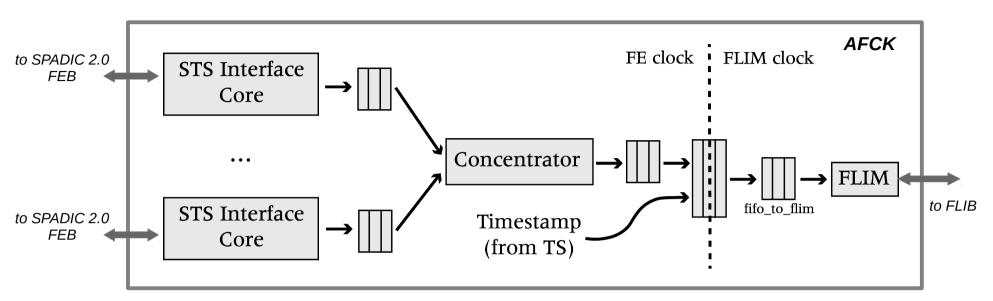

- AFCK installed in a micro TCA
- Configuration of the AFCK and SPADIC 2.0 by IPBUS
- Interface SPADIC 2.0 to AFCK by eDPB-FMC on FMC2
- Interface AFCK to FLIB by nDPB-FMC on FMC1



SPADIC 2.0 testboard

eDPB-FMC

AFCK



ELMA MicroTCA.4-Crate with 6 Slots

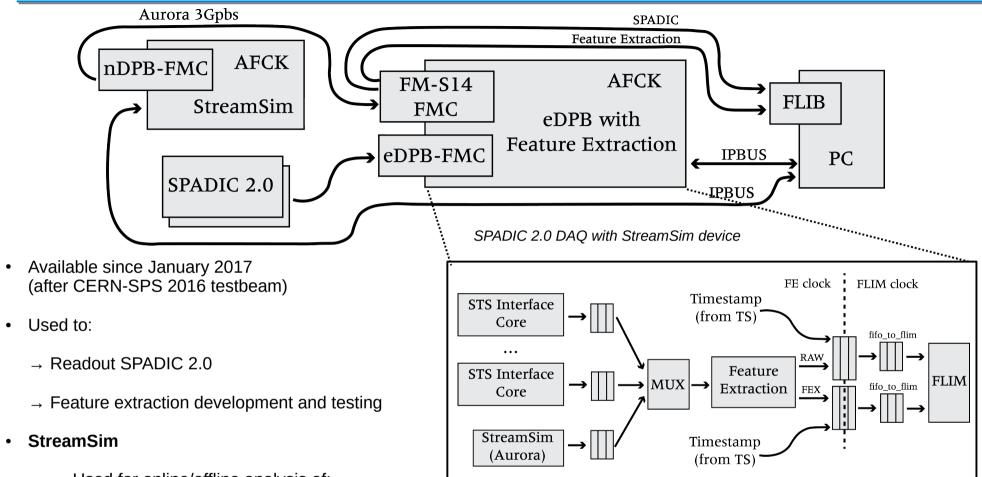
The TRD Readout Proposal at CERN-SPS 2016 testbeam - Firmware structure

AFCK firmware structure diagram

- IPBUS nor TS sync logic not shown in diagram, only data flow
- Used same design structure as 'nDPB_simpleMS' firmware design
- Result : eDPB firmware design
 ('e' stands for eLink and 'DPB' for Data Processing Board)

Simplified Microslices

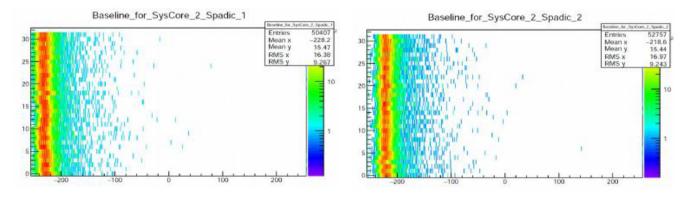
- FEE are synchronized with the TS system
- MS timestamps are synchronized with the TS system


- MS timestamps are built depending on the FEE data pre-processing time

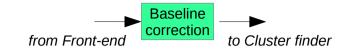
Based on Junfeng's DAQ talk, during the 28th CBM collaboration meeting

Firmware structure - eDPB simplified microslice with feature extraction

eDPB with feature extraction - firmware diagram


- \rightarrow Used for online/offline analysis of:
 - Algorithm tuning (e.g. Cluster finder, feature extraction)
- → Inject testbeam data to the eDPB (feature extraction)
- → Simulate data flow from front-ends
- → Simulates SPADIC 2.0 e-Link frames

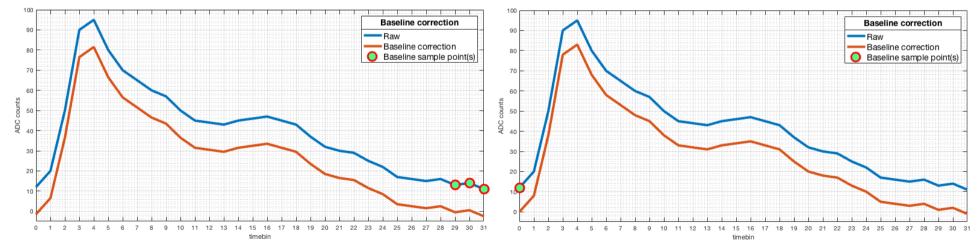
- First processing stage and most important step in data reduction
- Decrease the noise and systematic effects
- Baseline equalization for all 32 channels per SPADIC done by software


Example baseline equalization plot for all 32 channels of SPADIC_1 and SPADIC_2 readout by the SysCore_2 during the SPS CERN 2016 testbeam

On the DPB, the baseline correction is applied on every SPADIC hit-message

Operation modes

a. Fixed mode:


A constant value stored in a register is subtracted from all time bins

b. Bin dependent:

For every value of the current message, a value stored in a memory is subtracted from all time bins

c. Variable:

- c.1 Average of the last three bins of the time dependent signals is subtracted from all the message time bins Calculation is performed for every message independently
- c.2 First sample in front of the rising edge is subtracted from all message time bins Calculation is performed for every message independently

Plot of operation mode c.2

Correction methods according to SPADIC stop-type word

Number of samples are included in the SPADIC end-of-message word

Word type	Format	Content
SOM	1000 gggg gggg cccc	g: group ID, c: channel ID
TSW	1001 tttt tttt tttt	t: timestamp
RDA	1010 dddd dddd dddd	d: raw data
CON	Oddd dddd dddd dddd	d: raw data
:	<u>:</u>	<u>:</u>
CON	Oddd dddd dddd dddd	d: raw data
EOM	1011 nnnn nnhh -sss	n: number of samples contained in raw data block, h: hit type, s: stop type

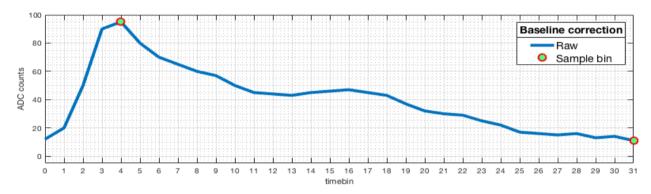
Word description of a SPADIC hit-message

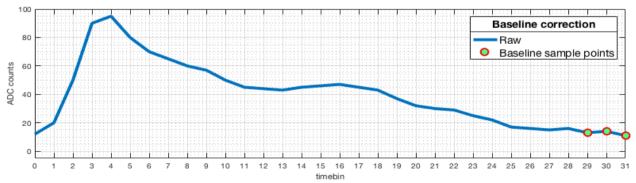
Stop type	Description	
000	normal end of the hit message	
001	aborted because the message output buffer was full	
010	aborted because the ordering FIFO was full	
011	multi hit: the next hit message was triggered before the current one was finished	
100	output buffer was full, multi hit detected simultaneously	
101	ordering FIFO was full, multi hit detected simultaneously	

SPADIC stop-type description

Messages have a defined number of samples (1-32)

Based on the SPADIC stop-type word, two methods can be applied :


- Default case:
 - Single-hit
 - Normal stop-type word
- Multi-hit case:
 - Multi-hit stop-type word

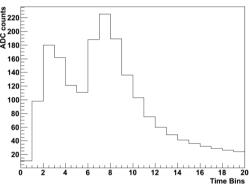

Default Case

- Message with sample number larger two:
 - One sample maximum amplitude
 - One pre-sample / with maximum distance relative to the maximum
 - The pre- or last message sample(s) is/are used to calculate and subtract the channel baseline

Baseline correction on SPADIC hit-messages with sample number larger two. Sample bins on bin 4 for maximum amplitude and bin 31 with maximum distance relative to the maximum

- Message with sample number larger than two:
 - Average of the last three bins of the time dependent signals is subtracted from all the message time bins

Baseline correction on SPADIC hit-messages with sample number larger than two.



Multi-hit case

- Number of samples smaller than normal predefined
- Second signal is on top of the ion-tail slope of the previous one
- Subtracting last-three bin's average → baseline overcompensation!

Example single-hit event

Example double-hit event

- Approaches:
- Subtraction of the pre-sample.
- Subtraction of a fixed measured baseline value.
- Subtraction a fitted baseline offset using the SPADIC response function.

Alternatives:

- Using SPADIC IIR filter
- No online processing of multi-hits → Transporting multi-hit messages directly to FLES for detailed analysis

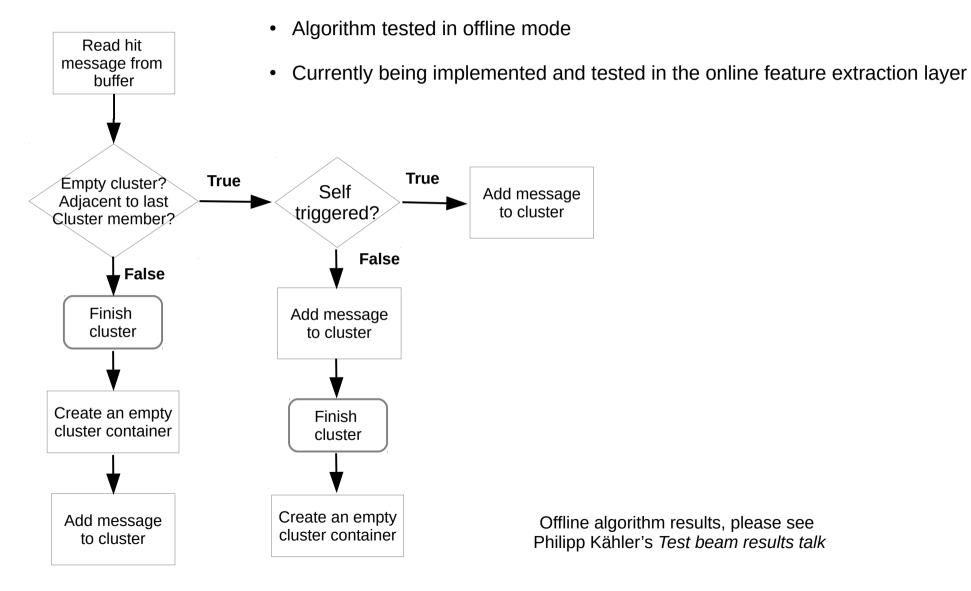
Cluster finder

- Data from each SPADIC is already time sorted
 - → Memory consumption is greatly reduced compared to another ASICs
- SPADIC word *hit-type* is a useful feature:
 - → Explains why the hit message was generated

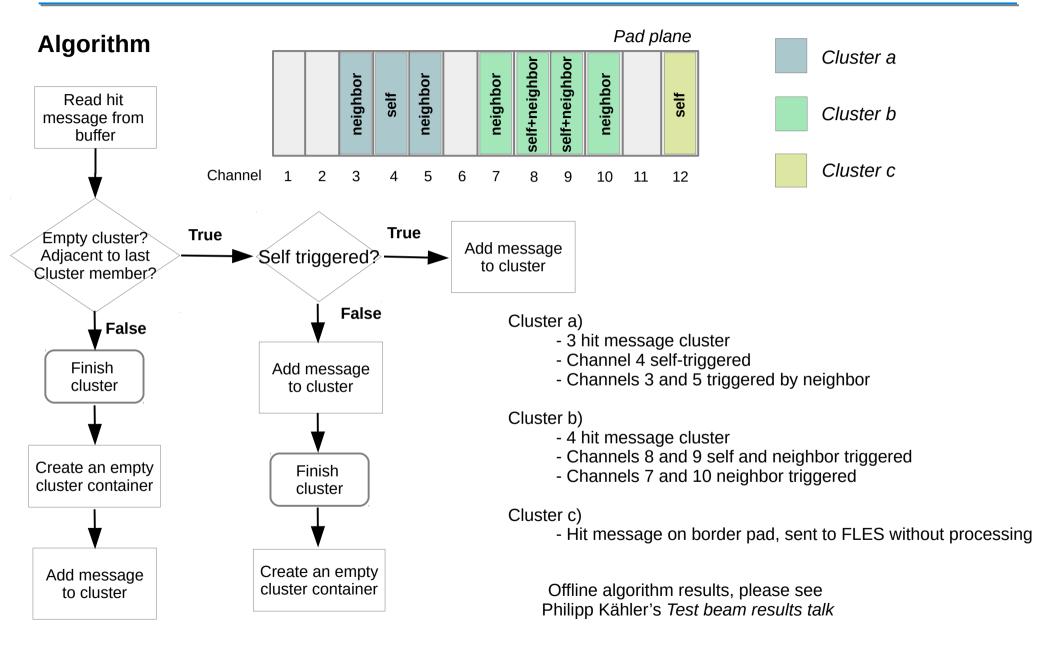
Hit type	Description
00	triggered by global signal (DLM)
01	self-triggered
10	triggered by neighbor channel
11	both of the above simultaneously

SPADIC hit-type description

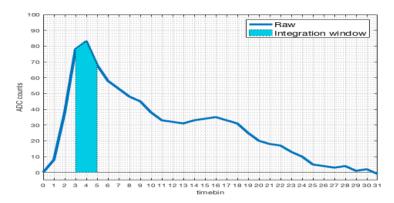
Goals:

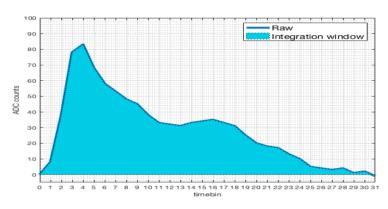

- Create hit-message clusters in space
- Apply feature extraction algorithms to the found clusters
 - Extract:
 - Total cluster charge
 - Centre-of-gravity in time and space direction
 - In other words, extract hit-position along the pad-row, cluster charge and time
- Data reduction

Cluster finder


Algorithm

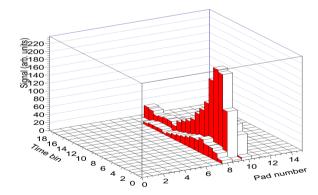
Cluster finder



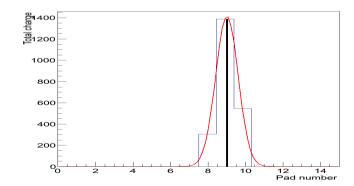

Signal pre-processing

Feature extraction algorithms:

Integrating signal amplitude over fixed number of samples



Example of signal integration around the maximum peak



Example of signal integration of the complete signal

Example 3-dimension plot of a 3 pad cluster

Center of gravity calculation of a (signal integrated) 3 pad cluster. Black line marks the position of the cluster centre along the pad

- Fitting the measured signal samples to the SPADIC response function
 - → Approach still under development

Data reduction

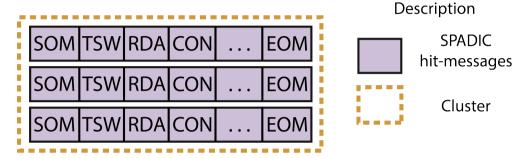
Considerations:

- One SPADIC hit-message containing 20 time bins
 - → Total of 256 bit
 - → Hit-message samples can be between 1-31 time bins
- Cluster size of 3 pads (default configuration)
 - → Configurable cluster size in firmware

Baseline correction

- No data reduction at this point
- Signal conditioning for later processing

Feature extraction algorithm structure implemented in the AFCK



Data reduction

Cluster finder

- r datare character
- Hit-message gathering
 - $_{\rightarrow}$ Gathers SPADIC hit-messages that belongs to a cluster
 - → No data reduction at this level
- Cluster merger
 - Merges meta-data from SPADIC hit-message clusters
 - A cluster can not have empty pads
 - → Metadata can be reduced

Hit-message gathering of the cluster finder algorithm. A cluster instance groups multiple SPADIC hit-messages

- Cluster timestamp
 - → Selected from central pad

or

- → Calculated by Centre-of-gravity (time direction)
- CH GP TS FLAGS Payload 0 Payload 1 Payload 2

Cluster structure after the cluster merger

Cluster

Slide 20

Description

- Data reduction ratio of ~1.3
 - Output of hit-message gathering: ~768 bit

Output of cluster merger: ~576 bit

Consider:

- → SPADIC hit-message containing 20 time bins
- → 3 pad cluster

Data reduction optimization under development

Data reduction

Feature extraction algorithm diagram

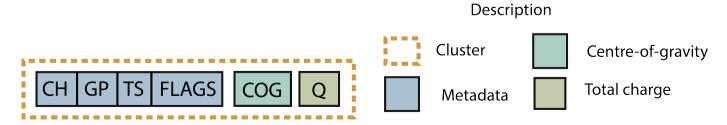
Feature extraction

· Processing over found clusters

· Algorithms used

- \rightarrow Total charge integration
- → Centre-of-gravity (Spatial)
- → Signal fit (under development)

Consider:


- → SPADIC hit-message containing 20 time bins
- → 3 pad cluster

Output vector

→ Data reduction ratio of ~4.5 (preliminary)

For an input cluster of ~576bit → output vector of 128 bit (COG and Q of 32 bit words each)

- → Algorithm output payloads between 32 to 64 bit (according to accuracy/error)
- → On-going analysis of algorithm accuracy against offline simulation

Example feature extraction output vector

Conclusions

eDPB firmware for the TRD readout proposal available

 \rightarrow OK

- → Developed during the CERN SPS 2016 testbeam
- → Integration of the SPADIC 2.0
- → Includes feature extraction algorithms

Optimization for TRD readout proposal

- → Under development (close to final)
- → On-going online/offline simulations in order to compare data quality
- \rightarrow FPGA resource consumption based on the AFCK
- \rightarrow Online algorithm tuning based on simulations and beamtest data

Thank you

