Novel experimental approaches to transfer reactions with RIBs

Riccardo Raabe

KU Leuven, Instituut voor Kern- en Stralingsfysica

Reactions studies with RIBs: challenges

- The luminosity dilemma
 Low beam intensities → use larger target thickness
 - → worse energy resolution
 - → no access to low momentum-transfer reactions

- Inverse kinematics
 - → Energy changes fast with lab angle
 - → Kinematic compression very small differences in energy of the light particle for different E*
 - → worse energy resolution

Typical values 200-300 keV resolution in *E**

Particle-gamma coincidence

⁶⁶Ni(d,p)⁶⁷Ni at REX-ISOLDE

J. Diriken et al, PLB 736 (2014) 533

Relatively high intensities
Not all states decay gamma

→ still a compromise

Transfer reactions in rings

Advantages

- Recirculating beam → increased intensity (but beam lifetime?)
- Cooled beams and very thin targets → excellent resolution, low detection thresholds

Problems to overcome

- High-density gas-jet target
- Detectors in ultra-high vacuum

Q. Zhong, Journal of Physics: Conference Series 202 (2010) 012011

Transfer reactions in rings

Measurements at ESR

- (p,γ) , (α,γ) and (p,d)in inverse kinematics
- 96 Ru(p, γ) 97 Rh B Mei et al, PRC 92 (2015) 035803 20 Ne(p,d) 19 Ne DT Doherty et al, Phys Scr 2015 014007
- Windowless gas target $(10^{13} H_2/cm^2)$ Decelerated beam Luminosity 10²⁵ cm⁻² s⁻¹
- Detectors in pockets separated from UHV

Low momentum-transfer reactions

Low energy recoils: detectors as vacuum interfaces

P. Egelhof (GSI), **EXL** Collaboration H. Moeini et al., NIMA 634 (2011) 77

Introduction

Auxilliary vacuum side

▶ Ultra-high vacuum side

Summary O

Low momentum-transfer reactions

Physics Letters B 763 (2016) 16-19

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

CrossMark

First measurement of isoscalar giant resonances in a stored-beam experiment

J.C. Zamora ^{a,*}, T. Aumann ^{a,b}, S. Bagchi ^{c,b}, S. Bönig ^a, M. Csatlós ^d, I. Dillmann ^b, C. Dimopoulou ^b, P. Egelhof ^b, V. Eremin ^e, T. Furuno ^f, H. Geissel ^b, R. Gernhäuser ^g, M.N. Harakeh^c, A.-L. Hartig^a, S. Ilieva^a, N. Kalantar-Nayestanaki^c, O. Kiselev^b, H. Kollmus^b, C. Kozhuharov^b, A. Krasznahorkay^d, Th. Kröll^a, M. Kuilman^c, S. Litvinov^b, Yu.A. Litvinov^b, M. Mahjour-Shafiei^{h,c}, M. Mutterer^b, D. Nagaeⁱ, M.A. Najafi^c, C. Nociforo b, F. Nolden b, U. Popp b, C. Rigollet c, S. Roy c, C. Scheidenberger b, M. von Schmid a, M. Steck b, B. Streicher b, L. Stuhl d, M. Thürauf a, T. Uesaka j, H. Weick b, J.S. Winfield b, D. Winters b, P.J. Woods k, T. Yamaguchi l, K. Yue a,b,m, J. Zenihiro j

Auxilliary vacuum side

▶ Ultra-high vacuum side

KU LEUVEN

Storage ring at ISOLDE

K. Blaum (MPI-K Heidelberg and GSI), Y. Blumenfeld (CERN), P.A. Butler (Univ. Liverpool), M. Grieser (MPI-K Heidelberg), Yu.A. Litvinov (Univ. Heidelberg and GSI), R. Raabe (KU Leuven), F. Wenander (CERN), Ph.J. Woods (Univ. Edinburgh) (eds.)

Rings ••••• Solenoids OOOOO Summary O

Storage ring at ISOLDE

Physics programme

Introduction

- Astrophysics
 Capture, transfer reactions
 ⁷Be half life
- Atomic physics
 Effects on half lives
 Di-electronic recombination
- Nuclear physics
 Reaction studies (with limitations → improve source)
 Isomeric states
 Decay of halo states
 Laser spectroscopy
- Neutrino physics

No TSR Ideas started for a different, new ring

Reactions: UK STFC grant

CRYRING

Research with CRYRING@ESR

- Workshop 24-25 April 2017
- Physics book Eur. Phys. J. Spec. Top. (2016) 225
- TDR 2016
- Astrophysics (reactions)
- Atomic physics
- **Nuclear physics** (with atomic methods)

A different approach: the HELIOS solenoidal spectrometer

A different approach: the HELIOS solenoidal spectrometer

Eliminates kinematic compression

Some HELIOS results

Figures and info: A. Wuosmaa, Workshop Solenoid at ReA, ARGONNE 2017

Some HELIOS results

Figures and info: A. Wuosmaa, Workshop Solenoid at ReA, ARGONNE 2017

Some HELIOS results

Figures and info: A. Wuosmaa, Workshop Solenoid at ReA, ARGONNE 2017

- (d,p) on heavy stable beams ⁸⁶Kr, ¹³⁶Xe
- Reactions with light RIBs (d,p)
 10B(p,p')¹⁰B*
 14,15C(d,³He)^{13,14}B
 27Al(d,t)²⁶Al
 14,15C(d,α)^{12,13}B
 - (α,p) (³He,d) (⁶Li,d)
- 13 publications to date

S. Bedoor PRC 93, 044323

Introduction ●● Rings ●●●●●● Solenoids ●●●●○ Summary ○

ISOL Solenoidal Spectrometer at ISOLDE

P Butler, S Freeman, R Page Liverpool, Manchester, Daresbury

Approved proposals

D K Sharp (Manchester)
 ^{28,29}Mg(d,p)

B P Kay (Argonne)
 206Hg(d,p)

ISS

Introduction Solenoids **Summary O**

ISS at ISOLDE: SpecMAT

IKS, KU Leuven

erc

SpecMAT Active target + γ -ray detection

- High luminosity, preserving resolution
- Transfer reactions
- Low momentum-transfer reactions

Introduction Rings Solenoids Solenoids Summary

Summary

- Transfer reactions:
 - Solenoids now routinely used
 - Rings at present limited to few cases (astrophysics), for more general use still issues to be assessed
- Low momentum-transfer reactions
 - Rings (ESR) first measurements
 - Active targets may prove competitive
- Scope of rings is very broad extremely exciting machines!

