A New Dedicated Plunger device for the GALILEO γ-ray array

Claus Müller-Gatermann¹, Alfred Dewald¹, Christoph Fransen¹, Marcel Bast¹, Marcel Beckers¹, Thomas Braunroth¹, Alain Goasduff², Alina Goldkuhle¹, Julia Litzinger¹, Daniele Mengoni³, Franziskus Spee¹, Jose Javier Valiente-Dobón², and Dorothea Wölk¹

¹Institut für Kernphysik, Universität zu Köln, Deutschland
²INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy
³Dipartimento di Fisica dell'Università di Padova, Italy
Outline

Lifetime Measurements using Plunger devices

The GALILEO spectrometer

Design and functionality of the GALILEO Plunger

Commissioning Run reproducing lifetimes in 180Pt

Discussion of the results

Summary
Lifetime measurements using Plunger devices

\[E_{sh} = E_{us} \frac{\sqrt{1 - \beta^2}}{1 - \beta \cos(\theta)} \]

\[\tau(x) = \frac{I_{us}(x)}{d/dt I_{sh}(x)} \frac{1}{v} \]

beam → target → distance → stopper

\[E_{\text{Flight}} \quad E_{\text{Stop}} \]
The GALILEO spectrometer
The GALILEO spectrometer

Phase I: 3 rings with 5 single GASP detectors each @ 119°, 129° and 152°
1 ring with 10 single GASP detectors @ 90°
neutron wall in forward angles
possible use of EUCLIDES for light charged particles

Later: 5 additional single GASP detectors and 10 EUROBALL triple cluster detectors

other neutron detectors e.g. NEDA
Recoil detectors e.g. SPIDER or RFD
Fast timing detectors e.g. LaBr₃
Binary reactions fragment detectors e.g. MW-PPAC
High-energy γ-ray detectors e.g. PARIS prototype
Design and functionality of the GALILEO plunger

Some constrains for the design

- Possibility to vary distances between target and stopper foil from few micrometer to tens of millimeters with sub-micrometer precision
- γ-transparency of the device to minimize absorption of γ-rays emitted from de-exciting nucleus
- Positioning and alignment of the plunger in the existing target chamber
- Mechanism to stretch both target and stopper foils
- Active feedback system to compensate for changes in the target-stopper foil distance induced by the beam
- Coupling to existing complementary detectors like EUCLIDES
Design and functionality of the GALILEO plunger

- Target Holder
- Entrance collimator 4 mm
- Stopper Holder
- Target stretcher cone
- Stopper stretcher cone
- LPS-24 Piezo Motor
Design and functionality of the GALILEO plunger
Design and functionality of the GALILEO plunger

Mechanical compatibility proven in the commissioning run with 15 E -ΔE telescopes from the EUCLIDES array in forward angles
Commissioning Run reproducing lifetimes in 180Pt

Reaction 154Sm(32S,6n)180Pt @ 183MeV (v/c for 180Pt = 1,53(5) %)
Target 1 mg/cm2 154Sm on 2 mg/cm2 Ta, Stopper 10 mg/cm2 Au
25 HPGe Compton-Suppressed detectors of GALILEO (in 4 rings)
10 target to stopper distances from 5 µm to 150 µm measured (8 h each)
Spectrum of the ring @ 152° with a gate on 2$^+$ \rightarrow 0$^+$ in the same ring
Commissioning Run reproducing lifetimes in ^{180}Pt
Discussion of the results
Discussion of the results
summary

A compact plunger device was build for the GALILEO spectrometer
It is mechanically compatible to ancillary detectors like EUCLIDES
This plunger device works only with a linear motor (no piezo)
The commissioning run was successful
The lifetimes in ^{180}Pt are confirmed (for the $8^+ \to 6^+$ even higher precision)

Thank you for your attention!

Funded by the DFG, No. DE 1516/3-1
FIG. 1: IBM-CM total energy curves for $^{172-194}$Pt as a function of the β deformation parameter (IBM-CM parameters as given in [36]).

FIG. 4: (Color online) IBM-CM contour plots for $^{172-194}$Pt as a function of β and γ (IBM-CM parameters as given in [36]). The separation between adjacent contour lines amounts to 100 keV. The deepest energy minimum is set to zero, corresponding to the red color, while green corresponds to ≈ 3 MeV.