NUCLEAR STRUCTURE AND QUASIFISSION DYNAMICS

D.J. Hinde

for ANU/GSI/HIM/JGU collaboration

Department of Nuclear Physics, Research School of Physics and Engineering Australian National University, Canberra, ACT 2601, Australia

TASCA workshop GSI 1/9/2017

Dependence of quasifission probability and characteristics (time scale) on collision variables (related to P_{CN}):

- Compound nucleus fissility (~Z²/A);
- Entrance channel fissility $(~Z_1Z_2)$;
- Angular momentum;
- Nuclear structure of the colliding nuclei:
- static deformation
- closed shells (magic numbers)

– Many variables!

Structure effects important in Superheavy Element synthesis reactions!

Hinde et al., PRC **53** (1996) 1290 Rafiei et al., PRC **77** (2008) 024606 Thomas et al., PRC **77** (2008) 034610 Hinde et al., PRL **100** (2008) 202701 Hinde et al., PRL **101** (2008) 092701 du Rietz et al., PRL **106** (2011) 052701 Lin et al., PRC **85** (2012) 014611 Simenel et al., PLB 710 (2012) 607 Williams et al., PRC **88** (2013) 034611 du Rietz et al., PRC **88** (2013) 054618 Wakhle et al., PRL **113** (2014) 182502 Hammerton et al., PRC **91** (2015)041602 Prasad et al., PRC **91** (2015)064605 Khuyagbaatar et al., PRC **91** (2015) 054608 Prasad et al., PRC **93** (2016) 024608

Hinde et al., PRC **53** (1996) 1290 Rafiei et al., PRC **77** (2008) 024606 Thomas et al., PRC **77** (2008) 034610 Hinde et al., PRL **100** (2008) 202701 Hinde et al., PRL **101** (2008) 092701 du Rietz et al., PRL **106** (2011) 052701 Lin et al., PRC **85** (2012) 014611 Simenel et al., PLB 710 (2012) 607 Williams et al., PRC **88** (2013) 034611 du Rietz et al., PRC **88** (2013) 054618 Wakhle et al., PRL **113** (2014) 182502 Hammerton et al., PRC **91** (2015)041602 Prasad et al., PRC **91** (2015)064605 Khuyagbaatar et al., PRC **91** (2015) 054608 Prasad et al., PRC **93** (2016) 024608

Hinde et al., PRC **53** (1996) 1290 Rafiei et al., PRC **77** (2008) 024606 Thomas et al., PRC **77** (2008) 034610 Hinde et al., PRL **100** (2008) 202701 Hinde et al., PRL **101** (2008) 092701 du Rietz et al., PRL **106** (2011) 052701 Lin et al., PRC **85** (2012) 014611 Simenel et al., PLB 710 (2012) 607 Williams et al., PRC **88** (2013) 034611 du Rietz et al., PRC **88** (2013) 054618 Wakhle et al., PRL **113** (2014) 182502 Hammerton et al., PRC **91** (2015)041602 Prasad et al., PRC **91** (2015)064605 Khuyagbaatar et al., PRC **91** (2015) 054608 Prasad et al., PRC **93** (2016) 024608

Hinde et al., PRC **53** (1996) 1290 Rafiei et al., PRC **77** (2008) 024606 Thomas et al., PRC **77** (2008) 034610 Hinde et al., PRL **100** (2008) 202701 Hinde et al., PRL **101** (2008) 092701 du Rietz et al., PRL **106** (2011) 052701 Lin et al., PRC **85** (2012) 014611 Simenel et al., PLB 710 (2012) 607 Williams et al., PRC **88** (2013) 034611 du Rietz et al., PRC **88** (2013) 054618 Wakhle et al., PRL **113** (2014) 182502 Hammerton et al., PRC **91** (2015)041602 Prasad et al., PRC **91** (2015)064605 Khuyagbaatar et al., PRC **91** (2015) 054608 Prasad et al., PRC **93** (2016) 024608

Kinematic coincidence:

Determine (binary) mass-ratio $M_{R1} = A_{F1}/(A_{F1}+A_{F2}) = V_{2cm}/(V_{1cm}+V_{2cm})$

Hinde et al., PRC **53** (1996) 1290 Rafiei et al., PRC **77** (2008) 024606 Thomas et al., PRC **77** (2008) 034610 Hinde et al., PRL **100** (2008) 202701 Hinde et al., PRL **101** (2008) 092701 du Rietz et al., PRL **106** (2011) 052701 Lin et al., PRC **85** (2012) 014611 Simenel et al., PLB 710 (2012) 607 Williams et al., PRC **88** (2013) 034611 du Rietz et al., PRC **88** (2013) 054618 Wakhle et al., PRL **113** (2014) 182502 Hammerton et al., PRC **91** (2015)041602 Prasad et al., PRC **91** (2015)064605 Khuyagbaatar et al., PRC **91** (2015) 054608 Prasad et al., PRC **93** (2016) 024608

Effects of nuclear structure in the entrance channel: (i) Spherical magic nuclei and N/Z matching

Spherical magic nuclei and N/Z matching

C. Simenel et al., PLB 710 (2012) 607 E. Prokhorova et al., NP A802(2008)45 D.Y. Jeong, T. Valentini et al., ANU, unpublished

G. Mohanto et al., ANU, in preparation

G. Mohanto et al., ANU, in preparation

G. Mohanto et al., ANU, in preparation

Mass-symmetric and mass-asymmetric – trajectory bifurcation Mass-symmetric component is narrow – fusion fission? Effects of nuclear structure in the entrance channel: (ii) Static deformation alignment

Beam energies below average capture barrier:

Aligned deformed target nuclei

Hinde et al., PRL **74** (1995) 1295; Hinde et al., PRC **53** (1996) 1290

Correcting for limited angular coverage: QF simulation

 $^{34}S + ^{232}Th \longrightarrow ^{266}Sg (Z=106)$

Far below V_{B} , all capture reactions are in the axial (deformation aligned) configuration Dependence of tip/side collision yields calculated with CC capture model (CCFULL,CCMOD)

Vary θ_{FQF} and P_{FQF} for tip collisions to reproduce experiment

Mass-symmetric fission fragment angular distributions

Mass-symmetric component shows large angular anisotropies – QF (B.B. Back 1983)
³²S + ²³²Th

Sub-barrier (axial or tip collisions): $P_{CN} = (1-P_{FQF})(1-F_{SQF})$

M. Dasgupta

C. Simenel

E. Williams

D.Y. Jeung

- E. Prasad
- R. Rafiei (ANU, ANSTO,.....)

A. Wakhle (ANU, MSU,...)

- R.G. Thomas (ANU, BARC)
- R. du Rietz (ANU, Malmo)
- C.J. Lin (ANU, CIAE)
- G. Mohanto (ANU, BARC)
- J. Khuyagbaatar (GSI/Mainz)
- Ch.E. Düllmann (GSI/Mainz)
- H. David (GSI)
- Z. Kohley (MSU)
- K. Hammerton (MSU)
- M. Morjean (GANIL)
- D. Jacquet (Orsay)

+ many ANU students and postdocs running the ANU accelerator

Conclusions

- Magic numbers, N/Z matching important in cold fusion reactions more magic numbers are better – ⁴⁸Ca+²⁰⁸Pb – sub-barrier F-F(?) trajectory bifurcation ^{52,54}Cr + ^{206,208}Pb – fast QF + F-F(?)
 Deformation alignment – "tip collisions" – lower P_{CN}
 - fast QF below-barrier measured P_{FQF}
 - slow QF also below-barrier P_{SQF} additional reduction of P_{CN}
- Challenge for models of SHE synthesis: reproduce QF observables! Average collision outcomes Fluctuations, trajectory bifurcations, probabilities