Study of space charge dominated beams at the AWA rf photoinjector

Nicole Neveu

Illinois Institute of Technology Argonne National Laboratory nneveu@anl.gov

October 5, 2017

Outline

Facility Introduction

Photoinjectors

Ongoing Experiments

Simulations

Code

Optimization

Experimental Measurements

Overview

Beam Size Measurements

Argonne Wakefield Accelerator Facility

Two photocathode guns and accompanying linacs:

- <u>Drive Line</u>: Cs₂ Te cathode, 6 linac cavities
 - Charge 0.1-100nC
 - Energy \leq 65 MeV
- Witness Line: Mg cathode, 1 linac cavity
 - Charge 0.1-10nC
 - \bullet Energy $\leq 15~\text{MeV}$

ĕ٥

AWA Facility

Current experiments include:

- Emittance Exchange (EEX)
- Electron Radiography Imaging (ERI)
- Cathode Studies

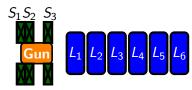
Current experiments include:

- Two Beam Acceleration (TBA)
- Beam line design for TBA = my thesis
- Dielectric accelerating and decelerating structure tests

Code

OPAL-T:

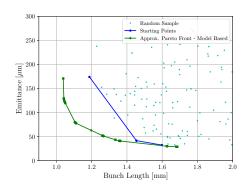
https://gitlab.psi.ch/OPAL/src/wikis/home


- Free, open source
- Developed at PSI, easy to work with developers
- Parallel (weak scaling)
- Features include 3D space charge and wakefields
- Can output data in beam or global reference frame

RF photoinjector benchmark:

https://gitlab.psi.ch/OPAL/src/wikis/RFPhotoInjector

Initial Optimization Goals at 40 nC


- Linac only, used BOBYQA algorithm
- Determine optimum settings for TBA experiments
- metrics = emittance & bunch length
- Varied 10 parameters:

Variable	Range	Unit
Solenoid Strength	$150 \le S_3 \le 440$	amps
Phase of Gun	$-40 \le \phi_{g} \le 40$	degrees
Laser Radius	$3 \leq R \leq 9$	mm
Laser FWHM	$2 \le T \le 10$	ps
Cavity Phase	$-40 \le \phi_L \le 40^1$	degrees

 $^{^{1}\}phi_{L} = [\phi_{L_{1}}, \ldots, \phi_{L_{6}}]$

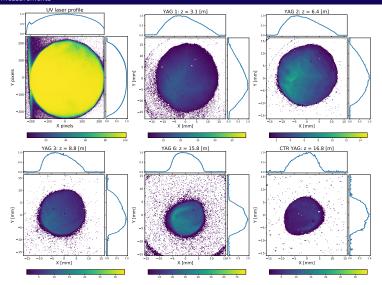
Initial Optimization Results at 40 nC

$$f(v,w) = w \,\bar{\epsilon}_x(v,z_1) + (1-w)\,\bar{\sigma}_z(v,z_1)$$

Code verifies:

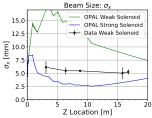
- Larger laser radius is always better
- Shorter laser pulse length \rightarrow shorter σ_z
- Longer laser pulse ightarrow lower $\epsilon_{{\sf x},y}$
- Running off crest in linac mitigates energy spread out of gun

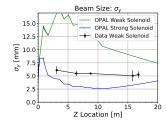
Overview


Took data exactly 2 weeks ago!

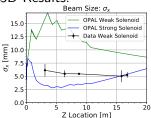
Tried to dial in machine settings based on simulations:

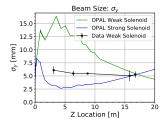
- Initial results did not match simulations not a surprise
- Identified issues:
 - Energy lower than expected
 - Solenoid strength
 - Shot to shot charge fluctuation
- Adjusted settings to approach simulation values
- Took four types of data:
 - Energy measurements
 - Beam size data YAG screens
 - Emittance scanning slit
 - Bunch length CTR (interferometer, and bolometer)


Beam Size Measurements



Hot spot on bottom left corner...origin laser?


0000


2D Results:

3D Results:

Summary

End Goal: Use simulations to optimize beam parameters.

- AWA beam line configuration is dynamic and variable
- Space charge drives the limitations for TBA experiments
- We need a set of tools to quickly optimize extremely different parameters
- Agreement between simulations and measurements should guide experiments

Thanks for your time!

