Quadrupolar Pick-ups to Measure Space Charge Tune Spreads of Bunched Beams

First MD Results from the PS

Adrian Oeftiger, Malte Titze

Acknowledgements:

Simon Albright, Marcel Coly, Heiko Damerau, Marek Gasior, Tom Levens, Elias Métral, Guido Sterbini, Panagiotis Zisopoulos

Space Charge 2017, GSI, Germany

4. October 2017

Goals of Study

Motivation

In the context of **strong space charge regime** with **LHC Injectors Upgrade** beam parameters: determine beam brightness (or incoherent space charge (SC) tune shift) **directly** via coherent quadrupolar modes

Basic principle:

- coherent dipolar (centroid) oscillation:
 no influence from SC (Newton's third law, actio = reactio)
- coherent quadrupolar (envelope) oscillation: transverse SC reduces frequency
- ⇒ quantify SC from envelope mode shift in quadrupolar spectrum

Content of this talk:

- peculiarities of CERN proton synchrotrons w.r.t. earlier experiences:
 - tunes close to coupling resonance, no "far off coupling approximation"
 - 2 bunched beams, large incoherent tune spreads from strong SC
- first observations from PS set-up with a quadrupolar RF kicker

Schematic Quadrupolar Pick-up

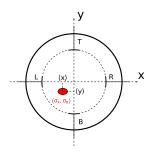


image taken from [1]

In the PS, re-cabling the Long Pick-up 72 as

$$(L+R)-(T+B)$$

results in the time signal

$$S_{\text{QPU}}(t) \propto \langle x^2 \rangle - \langle y^2 \rangle = \sigma_x^2(t) - \sigma_y^2(t) + \langle x \rangle^2(t) - \langle y \rangle^2(t)$$
 (1)

Some Historical Perspective

QPU in **time domain** for emittance measurements:

- 1983, R. H. Miller et al. at SLAC [2]
- 2002, A. Jansson at CERN in PS [3]
- 2007, C.Y. Tang at Fermilab [4]

QPU in **frequency domain** for space charge measurements:

- 1996, M. Chanel at CERN in LEAR [5]
- 1999, T. Uesugi et al. at NIRS in HIMAC [6]
- 2000, R. Bär at GSI in SIS-18 [7]
- 2014, R. Sing et al. at GSI in SIS-18 [1]
- ⇒ all far off coupling and coasting beams

CERN's proton synchrotrons:

- \longrightarrow close to coupling \Longrightarrow quadrupolar mode frequencies change
- → bunched beam

GSI results at SIS-18

QPU measurements at GSI by R. Singh, M. Gasior et al. [1]

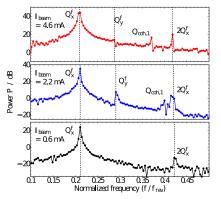


Figure 6: Shift of coherent quadrupole mode $Q_{\mbox{\scriptsize coh},1}$ with beam current.

particle type	N ⁷⁺
E_{kin} (MeV/u)	11.45
Ibeam (mA)	0.6 – 6
ϵ_x, ϵ_y (mm-mrad)	8, 12.75
Q_{x0}, Q_{y0}	4.21, 3.3

$$Q_x^f \stackrel{\frown}{=} Q_x$$
$$Q_y^f \stackrel{\frown}{=} Q_y$$
$$Q_{coh} \stackrel{\frown}{=} Q_{\pm}$$

→ far off coupling resonance

→ coasting beam ⇒ sharp envelope peak

Far Away vs. On the Coupling Resonance

2 eigenmodes for coherent quadrupolar oscillation:

far away from coupling

(a) horizontal mode (b) vertical mode

Relation of mode frequencies to incoherent KV tune shift:

$$Q_{\pm} = 2Q_{x,y}$$

$$-\left|\Delta Q_{x,y}^{KV}\right| \left(3 - \frac{\sigma_{x,y}}{\sigma_{x} + \sigma_{y}}\right) / 2 \tag{2}$$

full coupling

(a) breathing mode (b) antisym. mode

Relation of mode frequencies to incoherent KV tune shift:

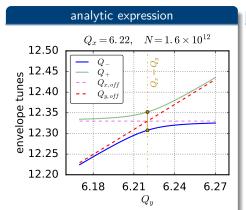
$$Q_{+} = 2Q_{0} - \left| \Delta Q_{x,y}^{\mathsf{KV}} \right| \tag{3a}$$

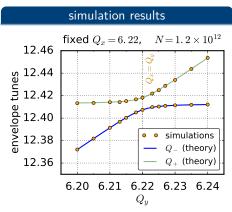
$$Q_{-} = 2Q_0 - \frac{3}{2} \left| \Delta Q_{x,y}^{\mathsf{KV}} \right| \tag{3b}$$

(assuming round beams, $Q_{x,y} \equiv Q_0$)

Peculiarity 1: Near Coupling Resonance

At vanishing lattice coupling, keep constant incoherent SC tune shift and fixed Q_x . Vary Q_y for a coasting round beam:





(N refers to intensity of coasting beam within total bunch length $B_L = 180 \, \mathrm{ns}$)

Peculiarity 2: Bunched Beam Envelope Signal

Assumption:

- synchrotron motion much slower than betatron motion, $Q_s \ll Q_{x0,y0}$
 - \longrightarrow 3D RMS envelope equation (Sacherer) decouples to 2D + 1D
 - \implies for a given longitudinal bunch slice, the coherent transverse quadrupolar oscillation depends on local line charge density $\lambda(z)$, longitudinal motion is quasi-stationary and independent (see e.g. [6])
 - \implies envelope tune spread with longitudinal bunch shape imprinted

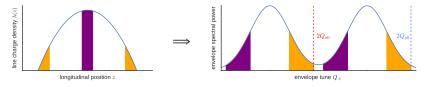


Figure: sketch of envelope detuning scaling with local line charge density

Expectation:

- lower end of envelope tune spread → strong SC at bunch centre
- \implies RMS-equivalent (maximal) KV tune shift $\Delta Q_{x,y}^{\text{KV}}$ from envelope spread

Incoherent KV Tune Shift

The uniform (Kapchinskij-Vladimirskij / KV) beam distribution has all particles at same incoherent space charge tune shift:

$$\Delta Q_{x,y}^{\mathsf{KV}} \doteq -\frac{K^{\mathsf{SC}} R^2}{4\sigma_{x,y}(\sigma_x + \sigma_y)Q_{x,y}} \tag{4a}$$

$$\doteq \frac{1 + \sigma_{x,y}/\sigma_{y,x}}{2Q_{x,y}}\Lambda\tag{4b}$$

Connect Λ quantity to general envelope mode expressions in terms of **observables**:

$$\Lambda = \frac{Q_{+}^{2} + Q_{-}^{2} - 4(Q_{x}^{2} + Q_{y}^{2})}{4 + 3(\sigma_{x}/\sigma_{y} + \sigma_{y}/\sigma_{x})}$$
 (5)

(Gaussian tune spread = 2x the RMS-equivalent KV tune shift!)

space charge perveance
$$K^{\rm SC} \doteq \frac{q\lambda}{2\pi\epsilon_0\beta\gamma^2p_0c}$$

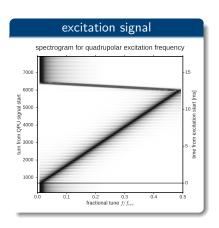
Experimental Set-up

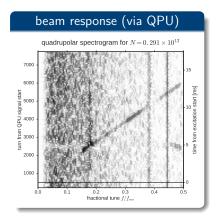
Ingredients:

- small time window of 15 ms with decoupled optics to single out space charge influence on envelope tune separation
- chirped excitation of beam via transverse feedback:
 external waveform generator appropriately connected to kicker plates
 - ullet 12 ms long frequency sweep with 1 ms return
 - harmonic h = 5 with frequency range 2.19 MHz to 2.4 MHz
- single bunch in PS with a factor 5 smaller incoherent SC tune shift compared to currently operational LHC beams, off coupling

intensity	$N \approx 0.3 - 0.4 \times 10^{12} \mathrm{ppb}$
transverse emittance	$\epsilon_{x,y} \approx 2.3 \mathrm{mm}\mathrm{mrad}$
average betatron function	$\beta_x \approx \beta_y \approx 16 \mathrm{m}$
average dispersion	$D_X \approx 3 \mathrm{m}$
momentum deviation spread	$\sigma_{\delta} \approx 1 \times 10^{-3}$
bunch length	$B_L \approx 180\mathrm{ns}$
synchrotron tune	$Q_s = 1/600 = 1.67 \times 10^{-3}$
KV space charge tune shift	$\Delta Q_{x,y}^{KV} \approx 0.02$

Quadrupolar Excitation: Chirp

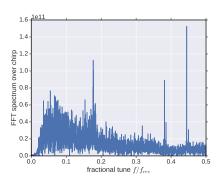


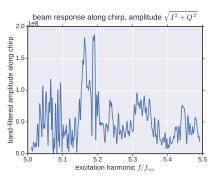


• dipolar excitation due to feed-down from quadrupolar excitation, seen in beam response at lower frequencies $f < 0.25 f_{\rm rev}$

Extracting the Beam Response...

(a) FFT across up-chirp time is not such a useful idea...





(b) ... instead project and band filter along local excitation frequency

Approach: In-phase and Quadrature Components

Take

- a) QPU time signal $S_{QPU}(t)$
- b) excitation signal $S_{\text{exc}}(t)$ (sine wave with increasing frequency)
- c) 90 deg shifted excitation signal $C_{\text{exc}}(t) = S_{\text{exc}}(t)|_{\phi \to \phi + 90 \text{ deg}}$

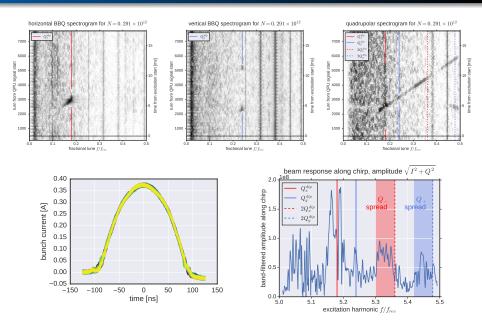
Assume immediate beam response to chirp:

- **① correlation**: find excitation start in $S_{QPU}(t)$ by correlation with $S_{exc}(t)$
- demodulation of measured QPU time signal into

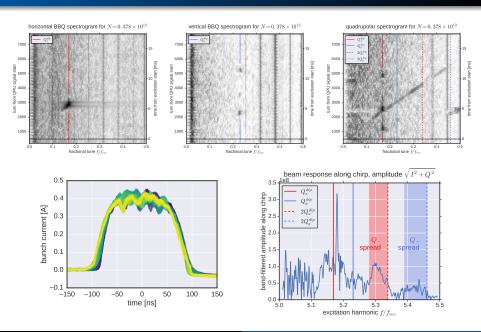
$$I(t) = S_{\text{QPU}}(t) \cdot S_{\text{exc}}(t) \qquad \text{(in-phase component)}$$
 and
$$Q(t) = S_{\text{QPU}}(t) \cdot C_{\text{exc}}(t) \qquad \text{(quadrature component)}$$

- **band filter** original $S_{QPU}(t)$ around time-varying excitation frequency by low pass filtering I(t) and Q(t)
- **amplitude** of beam response along chirp amounts to $\sqrt{I^2(t) + Q^2(t)}$

First Results: Parabolic Bunch



First Results: Flat Bunch



Summary and Outlook

In conclusion:

- transverse feedback (TFB) strong enough for quadrupolar excitation
- observed envelope tune spread in SC depressed bunched beam
- \implies Exciter + QPU = potentially very powerful diagnostic tool for SC

Next steps:

- QPU hardware: planned to have all H, V, Q channels simultaneously after this coming technical stop (for PS as well as SPS!)
- TFB: generate synchronous and clean signals for quadrupolar excitation with internal waveform generator
- improve QPU set-up and spectral analysis (e.g. subtract dipolar contribution from quadrupolar signal → 3 channels required!)
- dedicated space charge experiments (e.g. resonance studies)
- more realistic space charge simulations with bunched distributions

References I

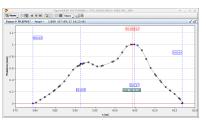
- [1] R Singh et al. "Observations of the quadrupolar oscillations at GSI SIS-18". In: (2014).
- [2] R H Miller et al. *Nonintercepting emittance monitor*. Tech. rep. Stanford Linear Accelerator Center, 1983.
- [3] Andreas Jansson. "Noninvasive single-bunch matching and emittance monitor". In: *Physical Review Special Topics-Accelerators and Beams* 5.7 (2002), p. 072803.
- [4] Cheng-Yang Tan. Using the quadrupole moment frequency response of bunched beam to measure its transverse emittance. Tech. rep. Fermi National Accelerator Laboratory (FNAL), Batavia, IL, 2007.
- [5] Michel Chanel. Study of beam envelope oscillations by measuring the beam transfer function with quadrupolar pick-up and kicker. Tech. rep. 1996.
- [6] T Uesugi et al. "Observation Of Quadrupole Mode Frequency And Its Connection With Beam Loss". In: KEK-99-98 (1999). URL: http://cds.cern.ch/record/472700.

References II

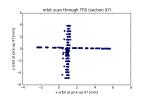
[7] R C Baer. "Untersuchung der quadrupolaren BTF-Methode zur Diagnose intensiver Ionenstrahlen". Universitaet Frankfurt, Germany, 2000.

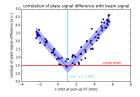
TFB: Impact of Orbit

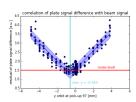
Set up a local bump through the TFB and measure the induced beam signal on the plates (effectively a BPM):



By scanning the orbit location one can minimise the difference signal:

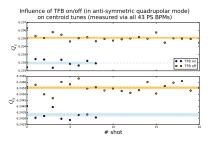


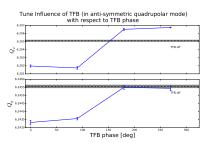




TFB: Static Quadrupole on h = 1

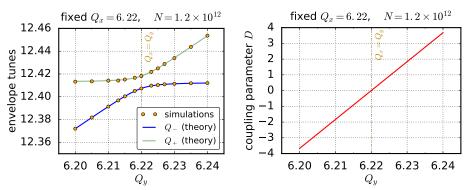
- ullet TFB pulsing at $f_{
 m rev}$ becomes a static quadrupole to the beam
- varying the phase of the pulsing RF quadrupole changes the tune impact





Simulations for Tune Scan

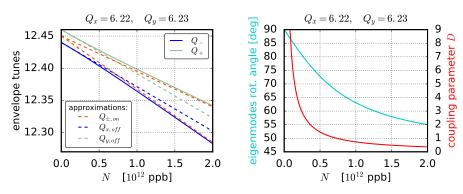
Simulations with KV beams for $N = 1.2 \times 10^{12}$ confirm theory:



- \longrightarrow r.m.s. equivalent Gaussian beams (with same $\sigma_{x,y}$ like KV beams) exhibit same quadrupolar tunes as KV
- ↑ Gaussian spectra broaden quickly

Intensity Scan

With slightly split tunes, approach full coupling by increasing bunch intensity:



 \implies scan space charge tune shift $\Delta Q_{x,y}^{\mathsf{KV}}$ and verify theory

Envelope Equations

Envelope equations of motion (e.o.m.)

$$r_x'' + K_x(s)r_x - \frac{\epsilon_{x,\text{geo}}^2}{r_x^3} - \frac{K^{SC}}{2(r_x + r_y)} = 0$$
 , (6a)

$$r_y'' + K_y(s)r_y - \frac{\epsilon_{y,\text{geo}}^2}{r_y^3} - \frac{K^{SC}}{2(r_x + r_y)} = 0$$
 (6b)

for transverse r.m.s. beam widths $r_{x,y} = \sigma_{x,y}$ have equilibrium

$$\frac{Q_x^2}{R^2}r_{x,m} - \frac{\epsilon_{x,geo}^2}{r_{x,m}^3} - \frac{K^{SC}}{2(r_{x,m} + r_{y,m})} = 0 \quad , \tag{7a}$$

$$\frac{Q_y^2}{R^2}r_{y,m} - \frac{\epsilon_{y,geo}^2}{r_{y,m}^3} - \frac{K^{SC}}{2(r_{x,m} + r_{y,m})} = 0$$
 (7b)

Linear Perturbation in Smooth Approximation

Constant focusing channel

$$K_{x,y} = \frac{1}{\beta_{x,y}^2} = \frac{Q_{x,y}^2}{R^2} = \text{const}$$
 (8)

gives linearised e.o.m. for perturbation around equilibrium $r = r_m + \delta r$

$$\frac{d^2}{ds^2} \begin{pmatrix} \delta r_x \\ \delta r_y \end{pmatrix} = -\underbrace{\begin{pmatrix} \kappa_x & \kappa_{SC} \\ \kappa_{SC} & \kappa_y \end{pmatrix}}_{\stackrel{\dot{=}}{=}(\kappa)} \cdot \begin{pmatrix} \delta r_x \\ \delta r_y \end{pmatrix}$$
(9)

with
$$\begin{cases} \kappa_{x,y} = 4 \frac{Q_{x,y}^2}{R^2} - \frac{2\sigma_{x,y} + 3\sigma_{y,x}}{\sigma_{x,y}} \kappa_{SC} \\ \kappa_{SC} \doteq \frac{K^{SC}}{2(\sigma_x + \sigma_y)^2} \end{cases}$$
(10)

Definitions

Coupling Parameter

$$D \doteq \frac{\kappa_y - \kappa_x}{2\kappa_{SC}} = 4 \frac{Q_y^2 - Q_x^2}{K^{SC} R^2} (\sigma_x + \sigma_y)^2 + \frac{3}{2} \left(\frac{\sigma_y}{\sigma_x} - \frac{\sigma_x}{\sigma_y} \right)$$
(11)

Rotation Into Decoupled Eigensystem

$$\tan(\alpha) = \frac{1}{2\kappa_{SC}} \left[\kappa_y - \kappa_x + \sqrt{4\kappa_{SC}^2 + (\kappa_y - \kappa_x)^2} \right]$$
$$= D + \sqrt{1 + D^2}$$
(12)

Incoherent Tune Shifts

KV Space Charge Tune Shift

$$\Delta Q_{x,y}^{\mathsf{KV}} = -\frac{K^{\mathsf{SC}} R^2}{4\sigma_{x,y}(\sigma_x + \sigma_y)Q_{x,y}} \tag{13}$$

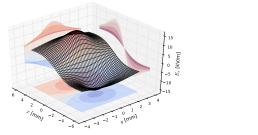
with
$$K^{SC} \doteq \frac{q\lambda}{2\pi\epsilon_0 \beta \gamma^2 p_0 c}$$
 (14)

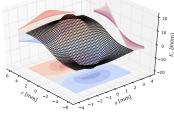
R.m.s. Equivalent Gaussian Space Charge Tune Spread

linearised Gaussian e-field = twice r.m.s. equivalent KV e-field

$$\implies \max \left\{ \Delta Q_{x,y}^{\mathsf{spread}} \right\} = 2 \Delta Q_{x,y}^{\mathsf{KV}} \tag{15}$$

Gaussian vs. R.m.s. Equivalent KV





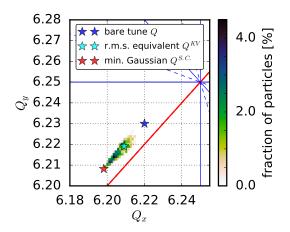
(a) Gaussian beam

(b) r.m.s. equivalent KV beam

Figure: Electric fields in r.m.s. equivalent distributions with same $\sigma_{x,y}$

Incoherent Tunes and R.m.s. Equivalence

Incoherent tune spread of a coasting, transversely Gaussian distribution:



Quadrupolar Mode Formulae

Quadrupolar Mode Tunes (General Formula)

$$Q_{\pm}^{2} = \frac{R^{2}}{2} \left[\kappa_{x} + \kappa_{y} \pm \sqrt{4\kappa_{SC}^{2} + (\kappa_{y} - \kappa_{x})^{2}} \right]$$

$$= 2(Q_{x}^{2} + Q_{y}^{2}) - \frac{K^{SC}R^{2}}{(\sigma_{x} + \sigma_{y})^{2}} \left[1 + \frac{3}{4} \left(\frac{\sigma_{y}}{\sigma_{x}} + \frac{\sigma_{x}}{\sigma_{y}} \right) \mp \frac{\sqrt{1 + D^{2}}}{2} \right]$$
(16)

Quadrupolar Mode Formulae

Off-resonance $D \gg 1$ With Round Beam

$$Q_{+} = 2Q_{y} - \frac{5}{4}|\Delta Q_{y}^{\mathsf{KV}}|$$
 , (17a)

$$Q_{-} = 2Q_{x} - \frac{5}{4}|\Delta Q_{x}^{KV}|$$
 (17b)

for $Q_{\nu} > Q_{x}$ otherwise exchange $x \leftrightarrow y$

Quadrupolar Mode Formulae

On-resonance $D \approx 0$ With Round Beam

$$Q_{+} = 2Q_{0} - |\Delta Q^{KV}| \quad , \tag{18a}$$

$$Q_{-} = 2Q_{0} - \frac{3}{2} |\Delta Q^{KV}| \quad . \tag{18b}$$

for $Q_0 \doteq Q_x = Q_y$ and $\Delta Q^{\mathsf{KV}} \doteq \Delta Q_x^{\mathsf{KV}} = \Delta Q_y^{\mathsf{KV}}$

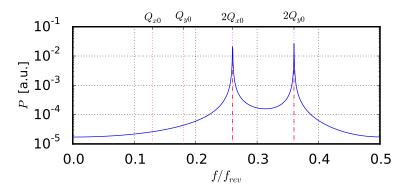
QPU Simulations in SPS

simulation parameters:

- machine: SPS at injection
- $\gamma = 27.7$
- $\epsilon_x = \epsilon_y = 2.5 \,\mathrm{mm} \mathrm{mrad}$
- $N_h = 1.25 \times 10^{11}$
- 512 2048 turns
- 2.6×10^5 macro-particles
- longitudinally matched Gaussian-type distribution
- betatron mismatch by 10% in both x, y
- ⇒ injection oscillations

QPU Spectrum: Only Betatron Mismatch

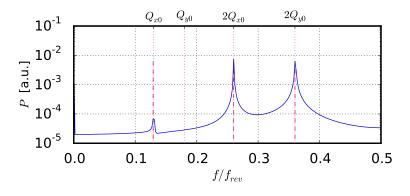
need beam mismatched to both β_x , β_y to see clear peaks



- \implies 2 Q_{x0} , 2 Q_{y0} from undepressed envelope oscillations
- ⇒ including synchrotron motion: same spectrum (no coupling!)

QPU Spectrum: Include Dispersion

smooth approximation: constant $D_x = 2.96$ around the ring



 \implies peak at Q_{x0} comes from dispersion

Reason for Dispersion Peak

$$\sigma_x(i_{\rm turn}) = \sqrt{\left\langle x_i^2 \right\rangle_{\rm beam} - \left\langle x_i \right\rangle_{\rm beam}^2}$$
 with
$$x_i(i_{\rm turn}) = \sqrt{\beta_x \epsilon_{x,i}^{\rm s.p.}} \cos(2\pi Q_{x0} i_{\rm turn} + \Psi_0) + D_x \delta_i$$

32 of 15

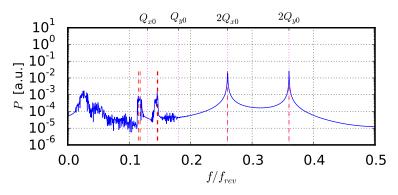
Reason for Dispersion Peak

$$\sigma_x(i_{\mathsf{turn}}) = \sqrt{\left\langle x_i^2 \right\rangle_{\mathsf{beam}} - \left\langle x_i \right\rangle_{\mathsf{beam}}^2}$$
 with $x_i(i_{\mathsf{turn}}) = \sqrt{\beta_x \epsilon_{x,i}^{\mathsf{s.p.}}} \cos(2\pi Q_{x0} i_{\mathsf{turn}} + \Psi_0) + D_x \delta_i$
$$\overset{\sim}{\Longrightarrow} x_i^2 = ... \underbrace{\cos^2(2\pi Q_{x0} i_{\mathsf{turn}} + ...)}_{... \cos(2\pi 2Q_{x0} i_{\mathsf{turn}} + ...)} + ... D_x \delta_i \cdot \cos(2\pi Q_{x0} i_{\mathsf{turn}} + ...) + ...$$
 due to: $2\cos^2(\alpha) = \cos(2\alpha) + 1$

i.e. only for $D_x \neq 0 \implies \text{peak at } Q_{x0}$

QPU Spectrum: Include Synchrotron Motion

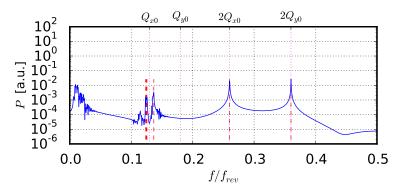
synchrotron motion couples to betatron motion through non-zero $D_x = 29.6 \,\mathrm{m}$ (smooth approximation!)



- \implies peak separation at Q_{x0} from synchrobetatron coupling
 - $Q_s = 0.017$ at injection for $V = 5.75 \,\text{MV}$

QPU Spectrum: Slower Synchrotron Motion

synchrotron motion couples to betatron motion through non-zero $D_x = 29.6 \,\mathrm{m}$ (smooth approximation!)



- $Q_s = 0.007$ changing $\gamma_{tr} = 17.95 \longrightarrow 25$ (while $\gamma = 27.7$)
- ⇒ peak separation shrinks

Reason for Peak Separation with Q_s

$$x_i^2 = ... + ... D_x \delta_i \cdot \cos(2\pi Q_{x0} i_{turn} + ...) + ...$$

with
$$\delta_i(i_{\text{turn}}) = \hat{\delta}_i \cos(2\pi Q_s i_{\text{turn}} + ...)$$

Reason for Peak Separation with Q_s

$$x_i^2 = ... + ... D_x \, \delta_i \cdot \cos(2\pi Q_{x0} \, i_{\rm turn} + ...) + ...$$
 with $\delta_i(i_{\rm turn}) = \hat{\delta}_i \cos(2\pi Q_s \, i_{\rm turn} + ...)$
$$\stackrel{\sim}{\Longrightarrow} x_i^2 = ... + ... \underbrace{\cos(2\pi Q_{x0} \, i_{\rm turn} + ...) \cos(2\pi Q_s \, i_{\rm turn} + ...)}_{\cos(2\pi (Q_{x0} - Q_s) \, i_{\rm turn} + ...) + \cos(2\pi (Q_{x0} + Q_s) \, i_{\rm turn} + ...)} + ...$$
 due to: $2\cos(\alpha)\cos(\beta)=\cos(\alpha-\beta)+\cos(\alpha+\beta)$

i.e. for $D_x \neq 0$ and $Q_s \neq 0$:

one peak at $Q_{x0} \implies$ two peaks located at $Q_{x0} \pm Q_s$