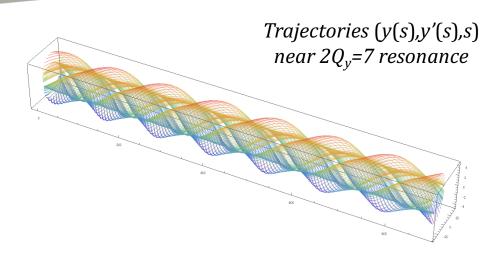
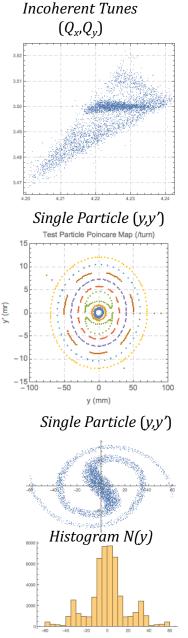


Particle loss near the half integer resonance: transition from frozen space charge to self-consistent models

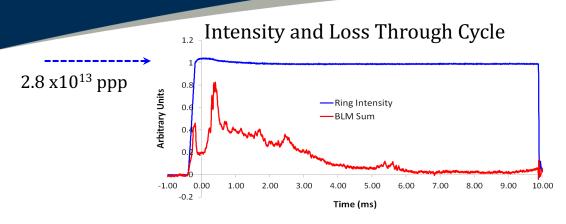


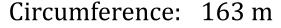
C M Warsop, D J Adams, B Jones, B G Pine, R E Williamson, A Pertica, C C Wilcox ISIS, RAL, UK

Space Charge 17, GSI Darmstadt, 4-6 October 2017


Contents

- 1. Introduction: What are we doing and why?
- 2. Review of space charge experiments and simulations
- 3. Simple frozen space charge model
- 4. Self consistent simulation study and comparison with model
- 5. Application of the model to explain measurements
- 6. Summary and next steps
- 7. Acknowledgements


1. Introduction


- Why does the half integer resonance matter?
 The high intensity limit ~ how near coherent limit?
 Can we understand and minimise its effects?
 Run at higher space charge levels lower linac costs?
- ISIS RCS: half integer important loss mechanism Early cycle loss:
 - $1 \sim \text{increase } Q_v \rightarrow \text{loss due to head-tail instability}$
 - 2 ~ decrease $Q_y \rightarrow$ loss due to half integer ($\Delta Q_{incoh} \approx 0.5$)
 - Whilst can see 1 directly, 2 is inferred from loss ... how real?
- Undertook experiments to observe more directly
 Simplify: RCS → SRM, 2D coasting beam; measure loss, profiles
 Can we explain what we really see, beyond beam loss?
 Explain evolution of beam distributions ...

1. The ISIS Synchrotron

Energy Range: 70-800 MeV

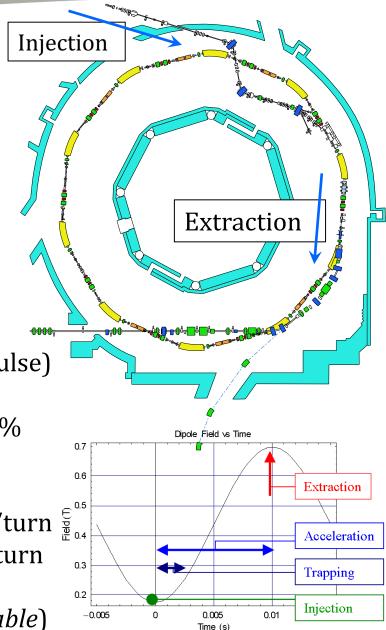
Rep Rate: 50 Hz

Intensity: $2.5-3.0 \times 10^{13} \text{ ppp (protons per pulse)}$

Beam Power: 160-200 kW

Losses: Inj: 2%, Trap: <3%, Acc/Ext <0.5%

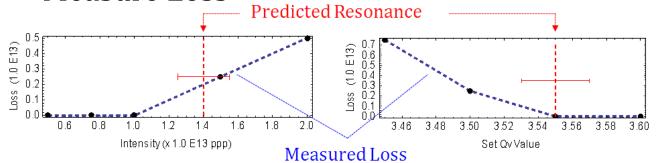
Injection: 130 turn, H⁻ charge-exchange

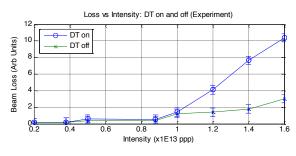

Acceptances: Collimated \sim 350 π mm mr

RF System: h=2, $f_2=1.3-3.1$ MHz, $V_2 \sim 160$ kV/turn $\frac{e^{0.5}}{2}$ $\frac{e^{0.5}}{2}$

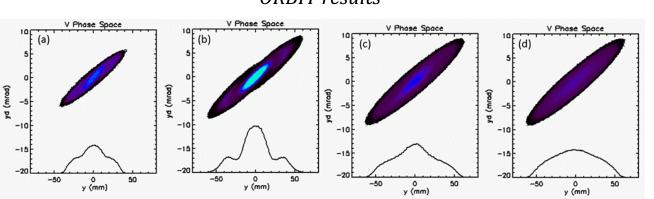
(2 bunches) h=4, $f_4=2.6-6.2$ MHz, $V_4 \sim 80$ kV/turn

Extraction: Single turn, vertical

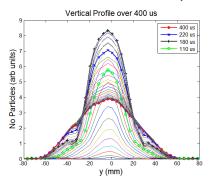

Tunes: $(Q_x, Q_y) = (4.31, 3.83) (programmable)$



2. Review of Experiments

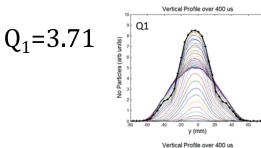

• Experimental studies 2D coasting beam (Storage Ring Mode) RF off, DC magnet field, inject small beam $\varepsilon_x = \varepsilon_y$, multi-turn injection $\varepsilon_{rms} \approx 20 \,\pi$ mm mr, $2Q_y = 7$ quadrupole driving term ($\Delta k_7 = 0.05$), $Q_y = 3.6$ Ramp intensity ($N_p \sim 1E13$ ppp), ramp tune: push onto coherent resonance

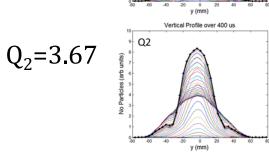
Measure Loss

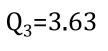


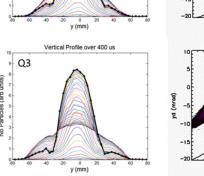
• Measure Profiles: Observations agree with ORBIT ORBIT results

Transverse profile *Measured over 400 μs*

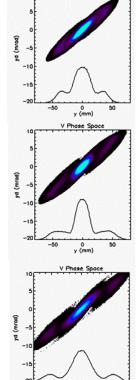


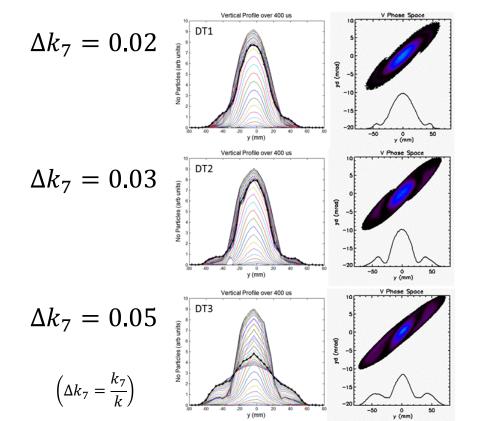

2. Review of Experiments


Experiments characterized profile evolution


Dependence on tune

Measured





ORBIT

Dependence on driving term

Measured **ORBIT**

2. Review of Experiments

- Summary of Experiments
- Loss "brick wall" corresponding to coherent limit
 But see slow build up of loss on approach
- Complicated beam profile evolution
 Verified, controllable, half integer "lobes"
 Characterized behaviour as function of tune, driving term, intensity
- Key questions:

What models can we use to understand the observations? Can we understand the time evolution of profiles? How accurate are the profile measurements? [1]

Phase Averaged Frozen WB Hamiltonian (1)

- Want to understand evolution of beam distributions
 Need understanding of single particle motion ~ start with simple model
- Assume space charge of frozen water bag (WB) distribution Essentially half integer resonance in non-linear field of WB beam Frozen WB: no coherent motion, not self consistent Ignore the fact WB is not stationary: look at "short-term invariants" Follows Venturini et al. [1] (but here there is no invariant KV distribution) Gives idea of particle motion, as a function of tune, intensity, driving term Here calculations summarised (details in [2])
- Distribution for 4D WB beam, with radius *a* is

$$n(r) = n_0(1 - \frac{r^2}{a^2})$$
 for $r \leq a$, zero otherwise) with $r^2 = x^2 + y^2$

Consider motion in one plane only: y=0, r=x (emittance of particle in orthogonal plane zero)

[1] Venturini & Gluckstern, PRSTAB V3 034203 (2000)

[2] Warsop, Proc. HB2016

Phase Averaged Frozen WB Hamiltonian (2)

Smooth focusing Hamiltonian is:

$$H(x, P_x, s) = \frac{1}{2}P_x^2 + \frac{1}{2}\omega^2 x^2 + K_d(s)x^2 + V(x)$$

• Piecewise potential: where
$$k = \frac{q^2N}{2\pi\epsilon_0 mc^2\beta^2\gamma^3}$$

$$V(x) = \begin{cases} V_i = -k(\frac{x^2}{a^2} - \frac{x^4}{4a^4}), & \text{if } x \le a \\ V_o = -k(\frac{3}{4} + \log \frac{|x|}{a}), & \text{if } x > a \end{cases}$$

• Use action-angle variables:
$$x = \sqrt{\frac{2J}{\omega}} \sin \phi$$
; $P_x = \sqrt{2J\omega} \cos \phi$

• And evaluate:
$$\overline{H(\phi,J,s)} = \frac{1}{2\pi} \int_0^{2\pi} H(\phi,J,s) d\phi$$

Assume system near half integer resonance:

derive "smoothed" motion

$$2Q = l\theta$$
; $\theta \equiv \theta(s) = \frac{s}{R}$; $K_d(s) = k_l \cos l\theta$

• Do integrals and a canonical transformation ...

q and m the particle charge and mass

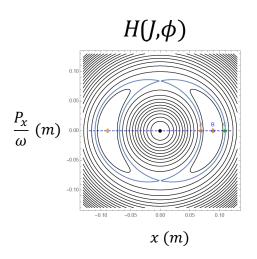
N the number line density,

c the speed of light and β and γ relativistic parameters.

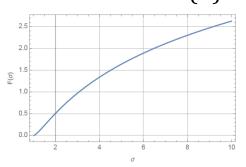
Phase Averaged Frozen WB Hamiltonian (3)

• The result is $\overline{H} = \overline{H(J, \overline{\phi})} = \delta J + SJ \cos 2\overline{\phi} + \overline{V(J)}$

• with
$$\delta = (\omega - \frac{l}{2R}) = \frac{1}{R}(Q - \frac{l}{2}), \qquad S = \frac{k_l}{2\omega}$$


$$\overline{V(J)} = \begin{cases} V_c = I_0 & \text{if } J \le J_a \quad (core) \\ V_h = I_1 + I_2 & \text{if } J > J_a \quad (halo) \end{cases}$$

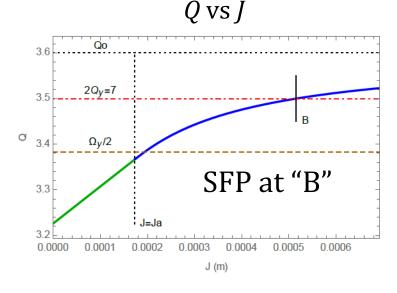
$$I_0 = k \left[-\frac{1}{a^2 \omega} J + \frac{3}{8} \frac{1}{a^4 \omega^2} J^2 \right]$$

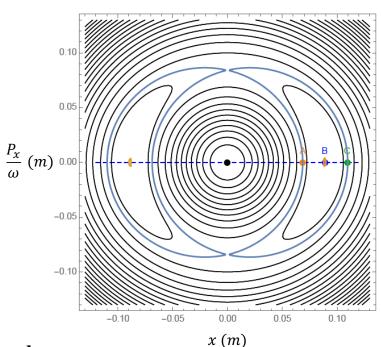

and with $\sin \phi_1 = 1/\sigma$ and $\sigma = x/a = \sqrt{2J/wa^2}$

$$I_1 = -\frac{k}{a^2} \left[\frac{J}{\omega} (\phi_1 - \frac{1}{2}\sin 2\phi_1) - \frac{J^2}{w^2 a^2} (\frac{3}{8}\phi_1 - \frac{1}{4}\sin 2\phi_1 + \frac{1}{32}\sin 4\phi_1) \right]$$

$$I_2 = -k \left[\frac{3}{4} \left(\frac{\pi}{2} - \phi_1 \right) + F(\sigma) \right] \quad \text{with} \quad F(\sigma) = \int_{\phi_1}^{\pi/2} \log(\sigma |\sin \phi|) d\phi,$$

The Function $F(\sigma)$

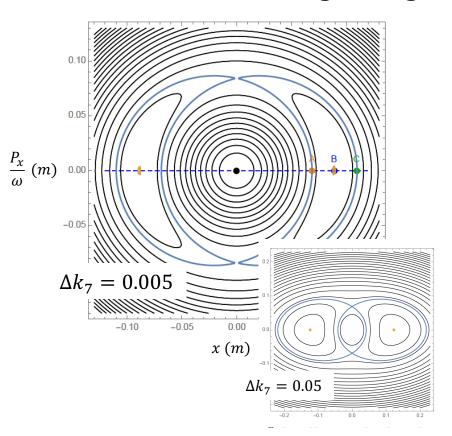

Essentials of Particle Motion


• Example of coasting beam on ISIS $2Q_v = 7$

Parameters are: $Q_y = 3.60$, $R = 26 \,\mathrm{m}$, $a = 0.05 \,\mathrm{m}$, l = 7, $\Delta k_7 = 0.005$ $(\Delta k_7 = k_7/k = 2k_7/\omega^2)$, and $N_p = 4.4 \times 10^{13} \,\mathrm{ppp}$ (protons per pulse, where $N = N_p/(2\pi R)$).

• Calculate Q(J) $w(J) = Q(J)/R = \frac{\partial H(J)}{\partial J}$.

• "Short term invariant" *H*



$$\frac{\Omega_y}{2}$$
 = coherent frequency of KV equivalent beam

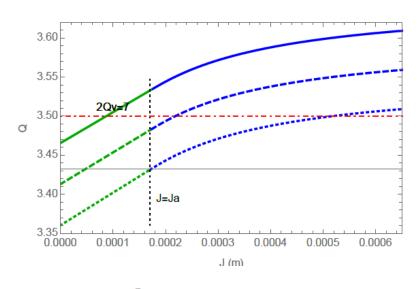
Predictions of model

- Driving strength
- *H* for increased driving strength

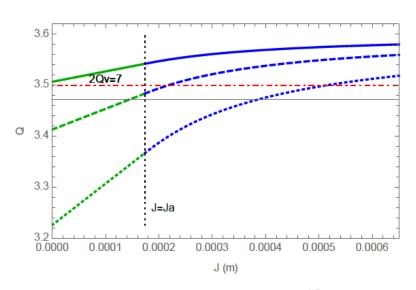
 Variation of SFP & island limits with driving strength

Figure 5: Dependance of island location and size on driving term strength.

$$N_p = 4.4 \times 10^{13} ppp$$


• Results confirmed with simple, direct 1D tracking

Predictions of model


• Variation of *Q(J)* with tune

$$R = 26 \,\mathrm{m}, \, a = 0.05 \,\mathrm{m}, \, l = 7, \, N_p = 2.2 \times 10^{13} ppp.$$

$$Q = 3.65, 3.60, 3.55$$
 (top to bottom)

• Variation of *Q(J)* with intensity

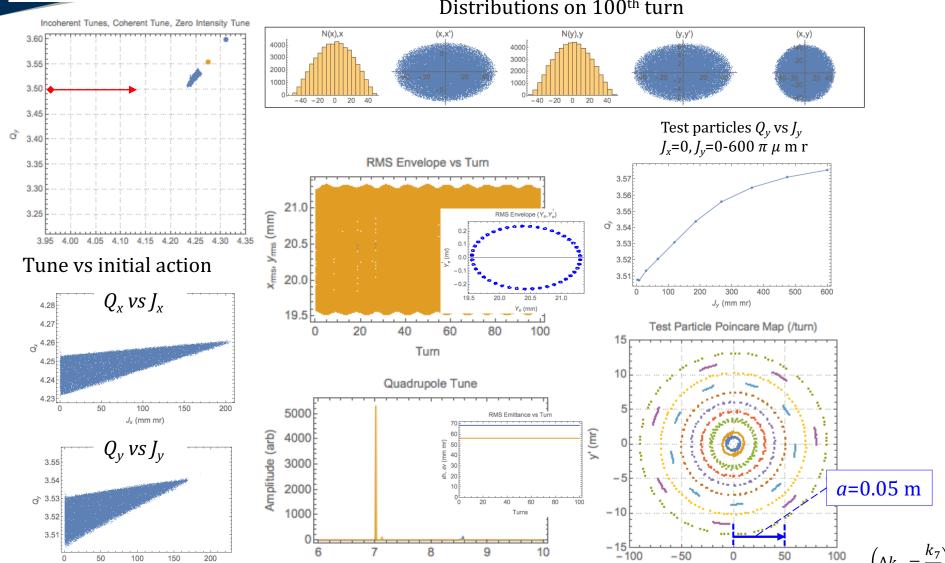
$$N_p = 1.1, 2.2, 4.4 \times 10^{13} ppp,$$
 (top to bottom)

SFP moves out with decreasing Q

SFP moves out with increasing N_p

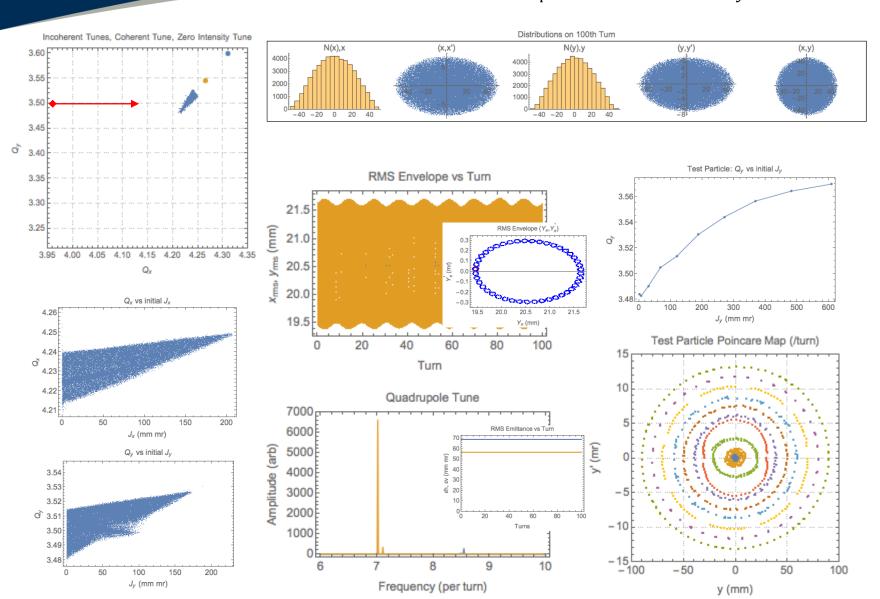
4. Self-consistent, 2D PIC code simulations, Set*

- See how theory compares to simulation
- Nominal ISIS like parameters: 70 MeV, N_p =1.1-4.4E13 protons per pulse (Q_x, Q_y) =(4.31, 3.60) $\varepsilon_{rmsx} \approx \varepsilon_{rmsy} \approx 70 \ \pi \ mm \ mr$, adjusted so a_x = a_y =0.05 m $2Q_y$ =7 driving term, $\Delta k_7 = \frac{k_7}{k} = 0.01$ Smooth focusing approximation 100x100 binning of 5E5 macro particles WB distribution, \sim RMS matched, tracked 100 turns
- Run a series of simulations as approach resonance No ramp of N_p or Q_y during run; repeat for different constant values Monitor trajectories of *test particles* inside and outside core

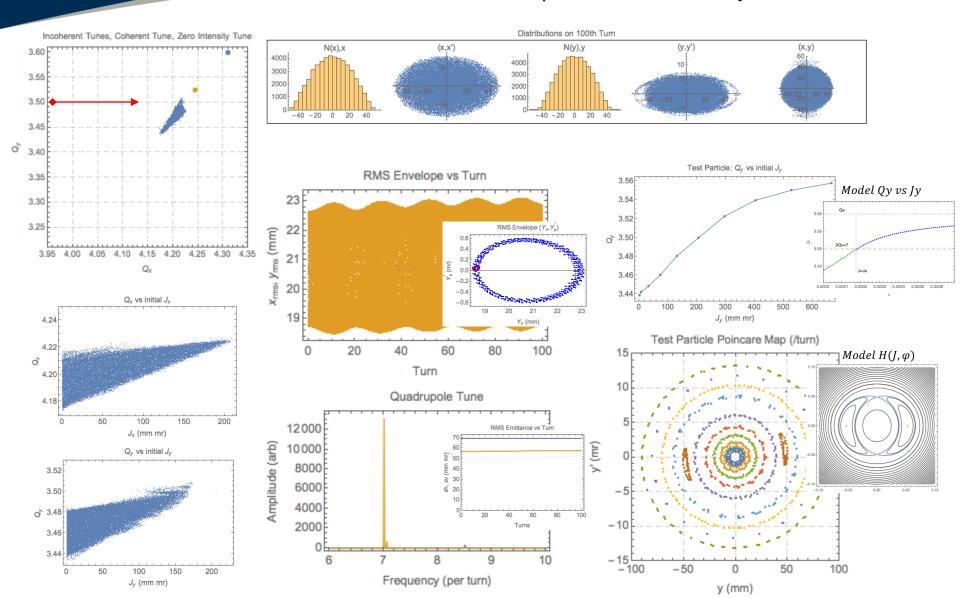

Tunes: incoherent, coherent

 J_y (mm mr)

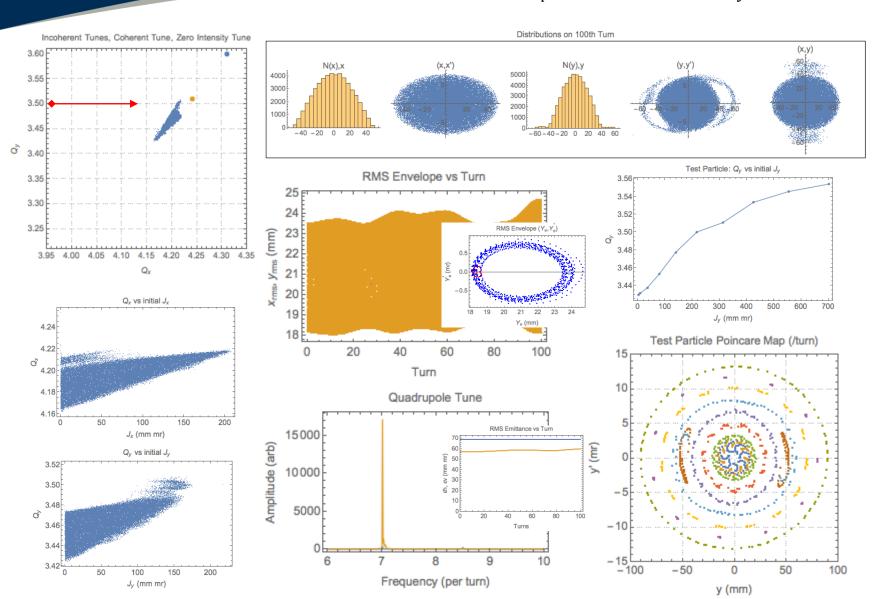
 N_p =1.10E13 ppp, Q_v =3.60, $\Delta k_7 = 0.01$

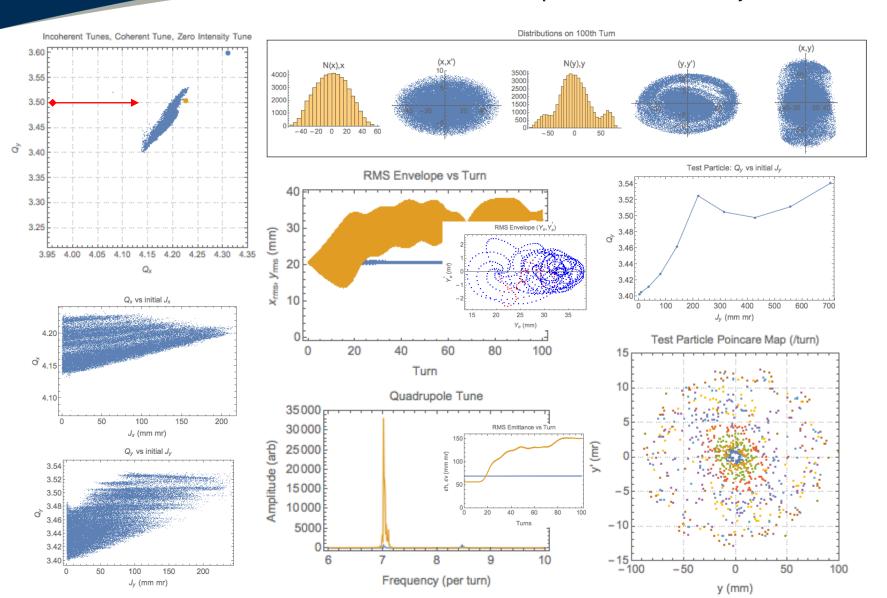

y (mm)

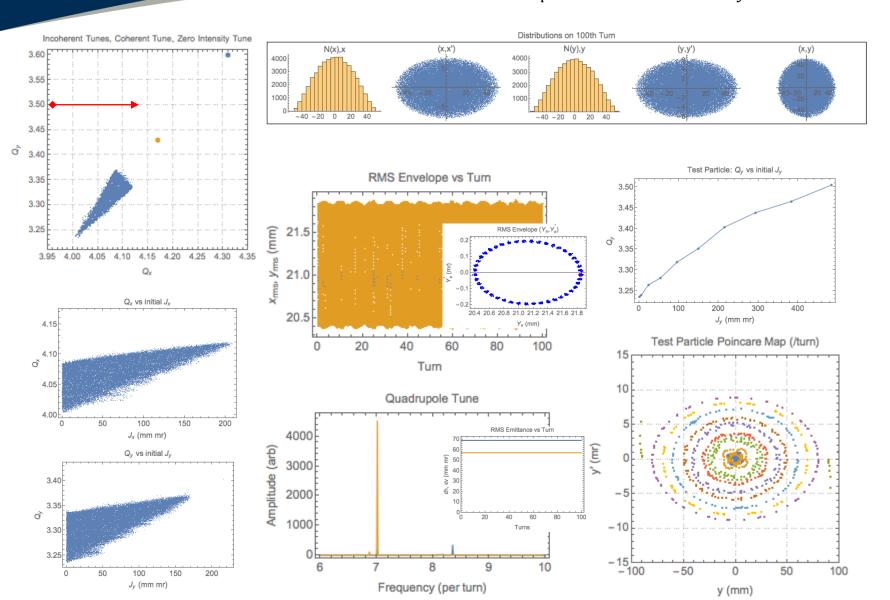
Distributions on 100th turn



Frequency (per turn)


 N_p =1.38E13 ppp, Q_v =3.60, $\Delta k_7 = 0.01$


 N_p =1.93E13 ppp, Q_y =3.60, $\Delta k_7 = 0.01$


 N_p =2.09E13 ppp, Q_y =3.60, $\Delta k_7 = 0.01$

 N_p =2.75E13 ppp, Q_y =3.60, $\Delta k_7 = 0.01$

 N_p =4.40E13 ppp, Q_v =3.60, $\Delta k_7 = 0.01$

Summary of results and interpretation

The model seems to qualitatively describe motion:

A "reasonable distance" from coherent resonance At larger *J* ("halo"), with moderate envelope oscillations SFP are roughly where expect (reduced by coherent motion?) *Possible incoherent loss: resonant islands pulling particles from core?*

- Intuitively expect in a self consistent WB beam:
 - ~ central core: coherent cancellation of driving term (like KV)
 - ~ outer beam: less coherent effect, more incoherent behaviour
- The model is unhelpful at, or very near, coherent resonance But once beam has redistributed, stabilised, it may be useful

4. Ideas for a better model

Future ideas for next level of approximation a "less-frozen" model

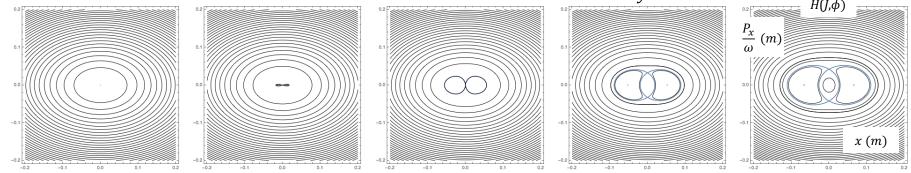
- Effect of envelope oscillation $[a \rightarrow a(1 + \delta a \sin l\theta)]$ Quadrupole field terms oppose driving term (cancel for KV) ~ varying "cancellation effect" with J (core→"halo") ~ explore effect for oscillation of RMS equivalent beam Modulation of octupole (and other) driving terms
- Effect of more realistic beam distributions
 Properties of different distributions (e.g. width, type)
 Time dependence: do quasi-static models predict evolution?
- Plus Motion in orthogonal plane; coupling and 2D effects ... Other relevant coherent, incoherent resonances, instabilities (AG, 3D ...) Identify mechanisms for ε_{rms} growth

5. Application to Measurements

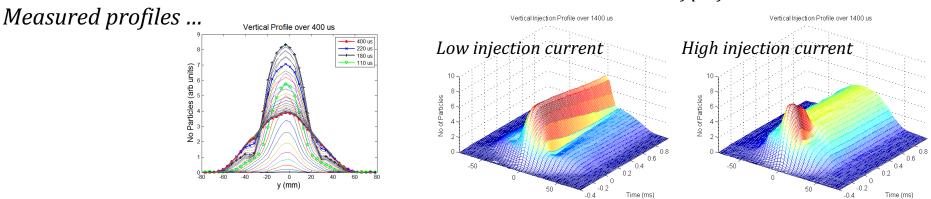
Can the frozen model tell us anything about the experiments?

 Experiment is more complicated than the simulations above Machine parameters constant, but ...

> Intensity ramped with multi-turn injection Beam distribution accumulates and evolves


• Contours of "short-term invariant" give useful guide Interpretation is work in progress, presently *a little speculative!*

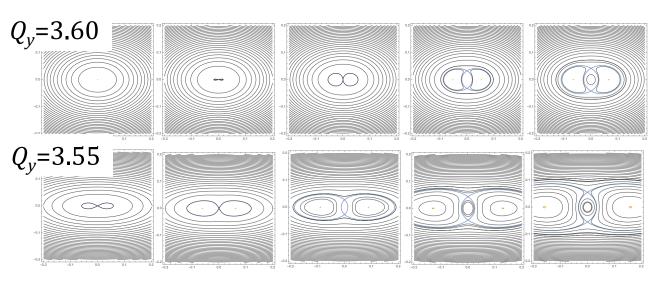
5. Application to Measurements


• Calculate "invariant" for experimental values Q_y =3.60, $\varepsilon_{rmsx} = \varepsilon_{rmsy}$ =20 π mm mr, Δk_7 = 0.05, a_x = a_y =28 mm For increasing intensity: N_p =0.10, 0.25, 0.50, 1.0, 1.5 E13 ppp

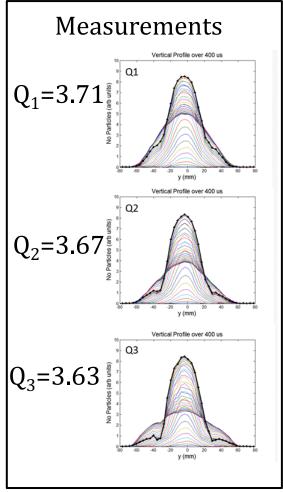
Equivalent to time snapshots through injection (a_x, a_y) constant

• *Helps* explain measured profiles ... Consistent with broadening, core and lobes:

Evolution of profile with time



Plus effects of coherent resonance, beam redistribution ...



5. Application to Measurements

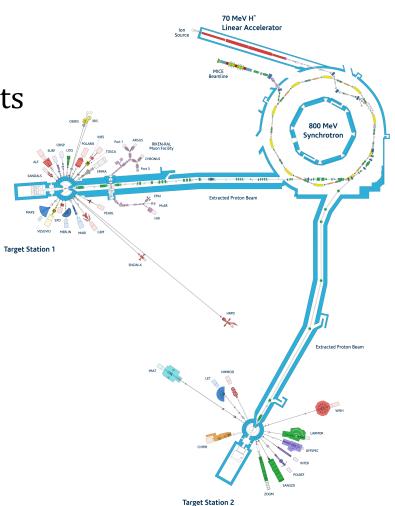
• Calculate "invariant" for experiment with Q_y =3.60, 3.55 For intensities: N_p =0.10, 0.25, 0.50, 1.00, 1.50 E13 ppp Other parameters as above

 Helps explain profile variation with Q Lobes move away from centre as Q drops

Plus effects of coherent resonance, beam redistribution ...

6. Summary and Next Steps

- The frozen model is useful guide to help understand observations, but needs more development
- Next some simple approximations will be added to include *effects* of coherent motion and look at variations with beam distribution
- These ideas will be tested against simulation and observation
- Development of beam experiments continues
 More detailed exploration of time dependence
 Exploit improved understanding of profile monitors
 Next look at bunched storage ring mode, then accelerated beams (RCS)
- Thus establish a fuller understanding of beam loss on ISIS ...

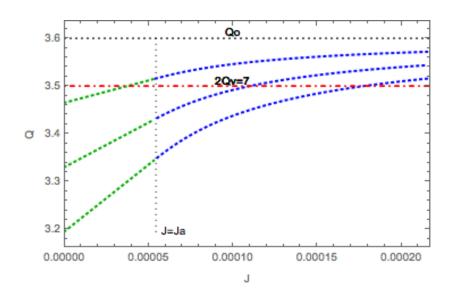


7. Acknowledgements

Many thanks to ...

ISIS Synchrotron Machine Physicists

- ISIS Diagnostics
- ISIS Operations Crew
- ISIS Intense Beams Group



Additional Material

5a. Application to Measurements

- Frozen model calculation of Q for the experiment (slide 24)
- Calculate Q vs J for the a=0.028 m beam at 0.5, 1.0, 1.5 E13 ppp

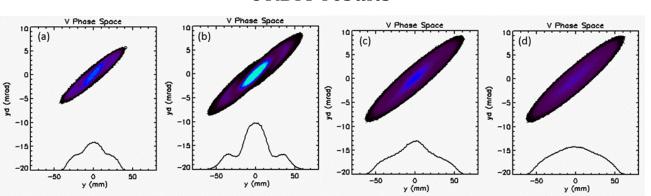
 $(*a=0.028, N_p=0.5, 1.0, 1.5E13 ppp, Q_v=3.60*)$

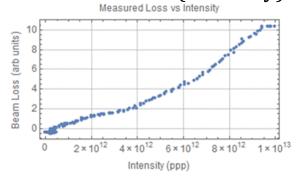
5a. Application to Measurements

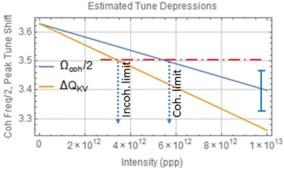
- Recalculating the frozen model for different beam sizes at the same intensity can also give an idea of how a growing beam might behave ...
- From the model: Q vs J for same intensity but different beam size

 $(*a=0.03 \text{ m}, 0.04 \text{ m}, 0.05 \text{ m}, N_p=1E13 \text{ ppp}, Q_y=3.6*)$

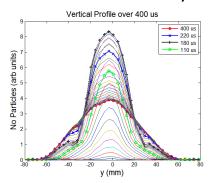
Would have a similar curve for most "sensible" distributions



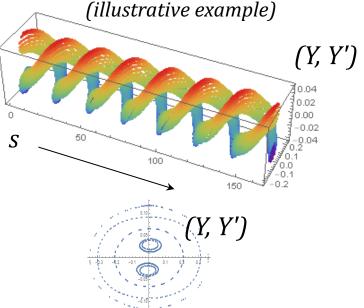

Loss & Tune vs time (intensity)


Half integer resonance with space charge

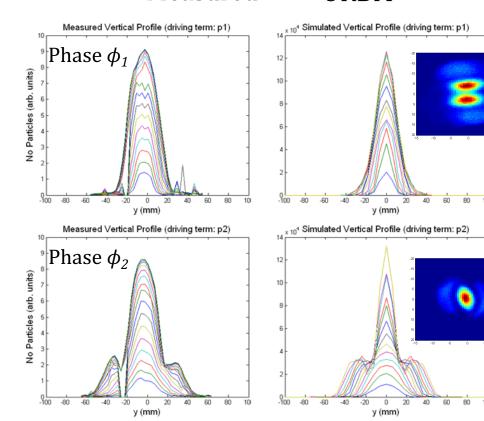
- Key loss mechanism
 Can we understand, predict evolution of halo, loss?
- Experimental studies 2D coasting beam RF off, DC field, inject small beam $\varepsilon_x = \varepsilon_y$ $\varepsilon_{rms} \approx 20~\pi$ mm mr, $2Q_y = 7$ driving term, $Q_y = 3.6$ Ramp intensity (1E13 ppp), push onto resonance
- Study evolution of profile
 Observations agree with ORBIT models
 Clear formation of core and lobes


ORBIT results

Transverse profile *Measured over 400 µs*



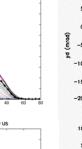
Half integer resonance

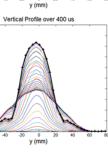

- Previous work: agreement measurement-simulation
- Rotation of half integer "lobes"

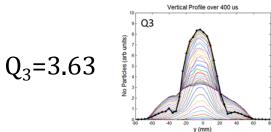
Control with driving term $\Delta k(\theta) = k_0 \cos(2Q_v \theta + \phi)$

Expected motion around ring at half integer resonance (illustrative example)

Dependence on driving term phaseMeasured ORBIT

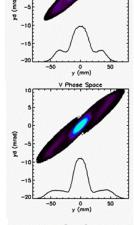

Half integer resonance

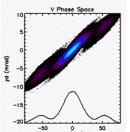

- Recent work: agreement measurement-simulation
- Measure as a function of tune and driving term


Dependence on tune

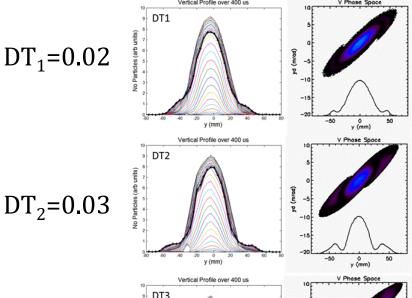
Measured ORB

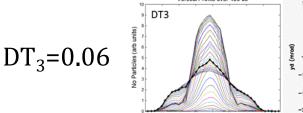
$Q_1 = 3.71$ $Q_1 = 3.71$ Vertical Profile over 400 us $Q_1 = 3.71$ Vertical Profile over 400 us

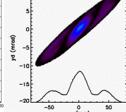




 $Q_2 = 3.67$

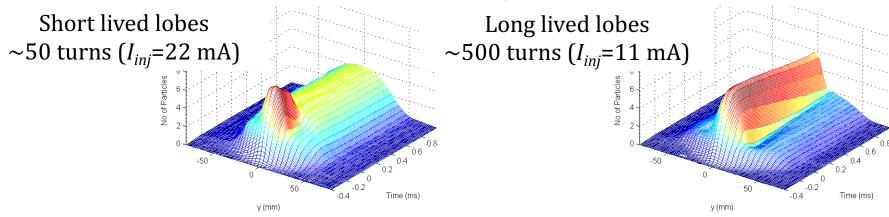


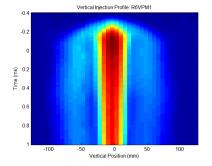


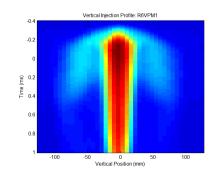

Dependence on driving term

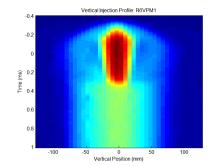
Measured

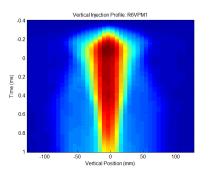
ORBIT




Half integer resonance

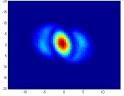

- Recent work: Observation of "stationary" distributions
- Slower accumulation of beam formation of stable "lobes"


Measured transverse profiles over 1 ms

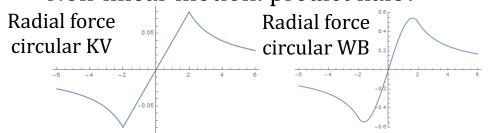


<u>Initial</u> experiments on stable halo (profiles now shown as colour contour)(i) Constant (as above) (ii) Ramp Q down (iii) Ramp Q down/up (iv) Rotate phase

Speculation & work in progress!

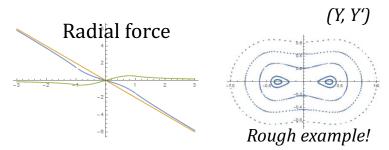

- Models to explain observations? Coherent model limited: coherent limit Approach from incoherent direction?
- Simplest 1D single particle model

(Y, Y')


$$H(J,\varphi) = \delta J + G_2 J \cos(2\varphi) + G_4 J^2$$

$$(Y, Y')$$

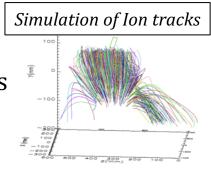
"Observation"

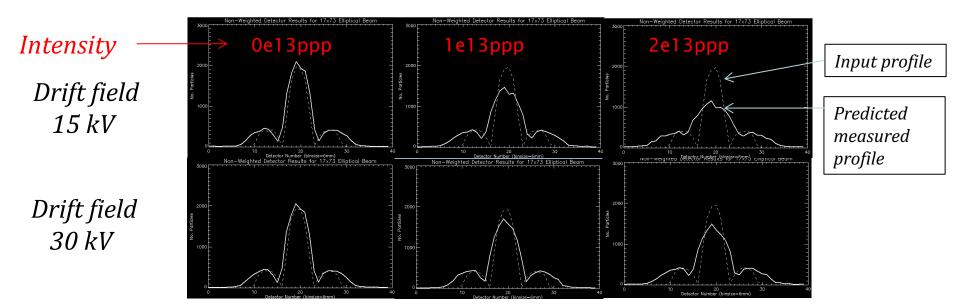


Here have space charge potential 1st guess usually KV model Linear motion: cannot describe growth 2nd guess WB model (non-stationary) Non-linear motion: predict halo?

Half integer resonance

Total radial force Focussing + space charge




- Simple simulations Driving term, fixed potential Non-linear motion ∼ edge of core Complicated ~ *still studying* ... "Incoherent" model of halo?
- Next add coherent motion? RMS envelope → modify halo "Coherent" model of halo?
- *May* be a useful idea ... Different KV-WB coherent motion?

R&D for transverse profile measurements

- Good transverse profile measurements essential Detailed models of ISIS residual gas ionisation monitors CST fields solvers and "in-house" code tracks ion trajectories Allow for non-linearities and space charge.
- Recent results checking halo measurements
 Input distributions predicted by ORBIT
 Check behaviour as function of drift field and intensity

C C Wilcox, R E Williamson, S J Payne, C M Warsop, et al