Global polarization of Lambda hyperons in Au+Au Collisions at RHIC BES

Isaac Upsal (OSU)
For the STAR collaboration
03/18/17
• $|L| \sim 10^3 \hbar$ in non-central collisions
• How much is transferred to particles at mid-rapidity?
• Does angular momentum get distributed thermally?
• Does it generate a “spinning QGP?”
 • consequences?
• How does that affect fluid/transport?
 • Vorticity: $\vec{\omega} = \frac{1}{2} \vec{\nabla} \times \vec{v}$
• How would it manifest itself in data?
Vorticity → Global Polarization

- Vortical or QCD spin-orbit: Lambda and Anti-Lambda spins aligned with L
Magnetic field \(\rightarrow \) **Global** Polarization

- **Vortical or QCD spin-orbit**: Lambda and Anti-Lambda spins aligned with \(L \)
- **(electro)magnetic coupling**: Lambdas *anti*-aligned, and Anti-Lambdas aligned

Both may contribute
Barnett effect

- Nice correspondence in **Barnett effect**
- **BE**: uncharged object rotating with angular velocity ω magnetizes

$$M = \chi \omega / \gamma$$

- γ = gyromagnetic ratio,
- χ = magnetic susceptibility

Barnett Science 42, 163, 459 (1915); Barnett Phys. Rev. 6, 239–270 (1915)
How to quantify the effect (I)

- Lambdas are “self-analyzing”
- Reveal polarization by preferentially emitting daughter proton in spin direction

\[
\Lambda \text{s with Polarization } \vec{P} \text{ follow the distribution:}
\]
\[
dN\over{d\Omega}\hat{\vec{P}}^* = \frac{1}{4\pi} (1 + \alpha \vec{P} \cdot \hat{\vec{p}}_p^*) = \frac{1}{4\pi} (1 + \alpha P \cos \theta^*)
\]
\[
\alpha = 0.642 \pm 0.013 \quad [\text{measured}]
\]
\[
\hat{\vec{p}}_p^* \text{ is the daughter proton momentum direction in the } \Lambda \text{ frame (note that this is opposite for } \bar{\Lambda})
\]
\[
0 < |\vec{P}| < 1: \quad \vec{P} = \frac{3}{\alpha} \hat{\vec{p}}_p^*
\]
How to quantify the effect (II)

Symmetry: $|\eta| < 1$, $0 < \varphi < 2\pi \rightarrow \| \hat{L} \$

Statistics-limited experiment: we report acceptance-integrated polarization,

$$P_{\text{ave}} \equiv \int d\beta_\Lambda \frac{dN}{d\beta_\Lambda} \bar{P}(\beta_\Lambda) \cdot \hat{L}$$

$$P_{\text{AVE}} = \frac{8}{\pi \alpha} \left\langle \sin (\varphi_\beta - \varphi_p^*) \right\rangle$$

where the average is performed over events and Λs

$R_{EP}^{(1)}$ is the first-order event plane resolution and φ_β is the impact parameter angle

** if $\nu_1 \cdot y > 0$ in BBCs $\varphi_\beta = \Psi_{EP}$, if $\nu_1 \cdot y < 0$ in BBCs $\varphi_\beta = \Psi_{EP} + \pi$
• Measured Lambda and Anti-Lambda polarization

• Includes results from previous STAR null result (2007)

• $\overline{P}_H(\Lambda)$ and $\overline{P}_H(\bar{\Lambda}) > 0$ implies positive vorticity

• $\overline{P}_H(\bar{\Lambda}) > \overline{P}_H(\Lambda)$ would imply magnetic coupling

Global polarization measure

arXiv:1701.06657
Global polarization measure

- Measured Lambda and Anti-Lambda polarization
- Includes results from previous STAR null result (2007)

We can study more fundamental properties of the system

• \(\bar{P}_H(\Lambda) \) and \(\bar{P}_H(\bar{\Lambda}) > 0 \) implies positive vorticity

• \(\bar{P}_H(\bar{\Lambda}) > \bar{P}_H(\Lambda) \) would imply magnetic coupling
• Magneto-hydro equilibrium interpretation

\[P \sim \exp \left(-\frac{E}{T} + \mu_B \frac{B}{T} + \mathbf{\omega} \cdot \mathbf{S} \right) \]

• for small polarization:

\[P_\Lambda \approx \frac{1}{2} \frac{\omega}{T} - \frac{\mu_\Lambda B}{T} \quad P_{\overline{\Lambda}} \approx \frac{1}{2} \frac{\omega}{T} + \frac{\mu_\Lambda B}{T} \]

• vorticity from addition:

\[\frac{\omega}{T} = P_{\overline{\Lambda}} + P_\Lambda \]

• B from the difference:

\[\frac{B}{T} = \frac{1}{2\mu_\Lambda} (P_{\overline{\Lambda}} - P_\Lambda) \]

\[\hbar = k_B = 1 \]

But even with topological cuts, significant feeddown from Σ^0, $\Xi^{0/-}$, $\Sigma^{*+/-}$...

... which themselves will be polarized...
Accounting for polarized feeddown

\[\text{PRIMARY + FEED-DOWN POLARIZATION} \]

\[\text{VERTICAL COMPONENT} \]
Accounting for polarized feeddown

PRIMARY + FEED-DOWN POLARIZATION

VERTICAL COMPONENT

<table>
<thead>
<tr>
<th>PRIMARY</th>
<th>MEASURED</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Lambda^+)</td>
<td>(\Sigma^0)</td>
</tr>
<tr>
<td>(\uparrow)</td>
<td>(\downarrow)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(J^P)</th>
<th>(\mu)</th>
<th>(J^P)</th>
<th>(\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Lambda)</td>
<td>(\frac{1}{2}^+)</td>
<td>-0.613</td>
<td>(\Sigma^*^-)</td>
</tr>
<tr>
<td>(\Sigma^0)</td>
<td>(\frac{1}{2}^+)</td>
<td>+0.79</td>
<td>(\Sigma^*^0)</td>
</tr>
<tr>
<td>(\Xi^-)</td>
<td>(\frac{1}{2}^+)</td>
<td>-0.651</td>
<td>(\Sigma^{*+})</td>
</tr>
<tr>
<td>(\Xi^0)</td>
<td>(\frac{1}{2}^+)</td>
<td>-1.25</td>
<td></td>
</tr>
</tbody>
</table>
Accounting for polarized feeddown

Primary + Feed-Down Polarization

Magnetic Component

```
\[
\begin{array}{cccccccc}
\text{primary} & \Lambda & \Sigma^0 & \Xi^- & \Xi^+ & \Sigma^*0 & \Sigma^*+ & \Lambda(1580) & \text{etc. + h.t.s.} \\
\downarrow & 1 & -\frac{1}{2} & \frac{3}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & & \\
\text{measured} & \Lambda & | & | & & \Xi^0 & | & & \\
\downarrow & & & & & 0.9 & & & \\
\text{measured} & \Lambda & | & | & & \Xi^0 & | & & \\
\downarrow & & & & & & & & \\
\end{array}
\]
```

Table: J^P, \mu

<table>
<thead>
<tr>
<th></th>
<th>J^P</th>
<th>\mu</th>
</tr>
</thead>
<tbody>
<tr>
<td>\Lambda</td>
<td>\frac{1}{2}^+</td>
<td>-0.613</td>
</tr>
<tr>
<td>\Sigma^0</td>
<td>\frac{1}{2}^+</td>
<td>+0.79</td>
</tr>
<tr>
<td>\Xi^-</td>
<td>\frac{1}{2}^+</td>
<td>-0.651</td>
</tr>
<tr>
<td>\Xi^+</td>
<td>\frac{1}{2}^+</td>
<td>-1.25</td>
</tr>
<tr>
<td>\Sigma^*0</td>
<td>\frac{1}{2}^+</td>
<td>-2.41</td>
</tr>
<tr>
<td>\Sigma^*+</td>
<td>\frac{1}{2}^+</td>
<td>+0.30</td>
</tr>
<tr>
<td>\Xi^0</td>
<td>\frac{1}{2}^+</td>
<td>+3.02</td>
</tr>
</tbody>
</table>

Becattini, Karpenko, Lisa, Upsal, Voloshin arxiv:1610.02506
Accounting for polarized feeddown

\[
\frac{\omega}{T} = \left[\frac{2}{3} \sum_R \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^0 R} C_{\Sigma^0 R} \right) S_R (S_R + 1) \right]^{-1} \left[\frac{2}{3} \sum_R \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^0 R} C_{\Sigma^0 R} \right) S_R (S_R + 1) \right] \mu_R
\]

- \(f_{\Lambda R} \) = fraction of \(\Lambda \)'s that originate from parent \(R \to \Lambda \)
- \(C_{\Lambda R} \) = coefficient of spin transfer from parent \(R \) to daughter \(\Lambda \)
- \(S_R \) = parent particle spin
- \(\mu_R \) is the magnetic moment of particle \(R \)
- Overlines denote antiparticles

From THERMUS

\[\hbar = k_B = 1 \]

** \[P_{\Lambda} \]

\[P_{\Lambda}^{\text{meas}} \]

\[
|P_{\Lambda}^{\text{meas}}| = \begin{pmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\Lambda}^{\text{meas}} \end{pmatrix}
\]

<table>
<thead>
<tr>
<th>Decay</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>parity-conserving: (\frac{1}{2}^+ \to \frac{1}{2}^+) 0^-</td>
<td>-1/3</td>
</tr>
<tr>
<td>parity-conserving: (\frac{1}{2}^- \to \frac{1}{2}^+) 0^-</td>
<td>1</td>
</tr>
<tr>
<td>parity-conserving: (\frac{3}{2}^+ \to \frac{1}{2}^+) 0^-</td>
<td>1/3</td>
</tr>
<tr>
<td>parity-conserving: (\frac{3}{2}^- \to \frac{1}{2}^+) 0^-</td>
<td>-1/5</td>
</tr>
<tr>
<td>(\Xi^0 \to \Lambda + \pi^0)</td>
<td>+0.900</td>
</tr>
<tr>
<td>(\Xi^- \to \Lambda + \pi^-)</td>
<td>+0.927</td>
</tr>
<tr>
<td>(\Sigma^0 \to \Lambda + \gamma)</td>
<td>-1/3</td>
</tr>
</tbody>
</table>

TABLE I. Polarization transfer factors \(C \) (see eq. (31)) for

Becattini, Karpenko, Lisa, Upsal, Voloshin arxiv:1610.02506
Extracted Physical Parameters

- Significant vorticity signal
 - Hints at falling with energy, despite increasing $J_{\text{collision}}$
 - 6σ average for 7.7-39GeV
 - $P_{\Lambda_{\text{primary}}} = \frac{\omega}{2T} \sim 5\%$

- Magnetic field
 - $\mu_N = \text{nuclear magneton}$
 - Positive value, 2σ average for 7.7-39GeV
Vorticity ~ theory expectation

• Thermal vorticity:

\[\frac{\omega}{T} \approx 2 - 10\% \]

\[\omega \approx 0.02 - 0.09 \, fm^{-1} \quad (T_{\text{assumed}} = 160 \, MeV) \]

• Magnitude, \(\sqrt{s} \)-dep. in range of transport & 3D viscous hydro calculations with rotation

\[
\begin{align*}
\langle \omega \rangle & \sim 2 - 10\% \\
\omega & \approx 0.02 - 0.09 \, fm^{-1} \\
& (T_{\text{assumed}} = 160 \, MeV)
\end{align*}
\]

Csernai et al, PRC90 021904(R) (2014)

Jiang et al, PRC94 044910 (2016)
• 3+1D viscous hydrodynamics
 • Not very sensitive to shear viscosity
 • Very sensitive to initial conditions
• Expectation: falling with \sqrt{s}
Magnetic field:
- Expected sign

\[B \sim 10^{14} \text{ Tesla} \]
\[eB \sim 1 m^2_{\pi} \sim 0.5 \text{ fm}^{-2} \]

- Magnitude at high end of theory expectation (expectations vary by orders of magnitude)
- But... consistent with zero
 - A definitive statement requires more statistics/better EP determination

Diagram:
- Graph showing the dependence of magnetic field (B) on the square root of the center-of-mass energy (\(\sqrt{s_{NN}} \))
- The magnetic field is plotted against the electrical conductivity effect of QGP.
Summary I

• Non-central heavy ion collisions create QGP with high vorticity
 — *generated* by early shear viscosity (closely related to initial conditions), persists through low viscosity
 — fundamental feature of *any* fluid, unmeasured until now
 • an incomplete characterization of QGP
 • relevance for other hydro-based conclusions?

• Huge and rapidly-changing B-field in non-central collisions
 — not directly measured
 — theoretical predictions vary by orders of magnitude
 — sensitive to electrical conductivity, early dynamics

• Both of these extreme conditions must be established & understood to put recent claims of chiral effects on firm ground
Summary II

- **Global hyperon polarization**: unique probe of vorticity & B-field
 - non-exotic, non-chiral
 - quantitative input to calibrate chiral phenomena

- **STAR has made the first observation** of global Λ polarization
 - statistics- & resolution-limited: 1-5σ effect for any given $\sqrt{s_{NN}}$
 * ~6σ effect on average

- **Interpretation** in magnetic-vortical model:
 - clear vortical component of right sign, magnitude for $\sqrt{s_{NN}} < 30$ GeV
 - magnetic component of right sign, magnitude *hinted at*, but consistent with zero at each $\sqrt{s_{NN}}$

- **BES-II**: Statistics & upgrades will allow characterization & model discrimination