

Beam Energy Scan II (BES-II) and FXT: Status and Plans

Daniel Cebra University of California, Davis

> CBM-STAR Joint Workshop TU Darmstadt

Slide 1 of 23

FXT

Motivation for Energy Scans

Onset of deconfinement; nature of the phase transition; Critical Point; Partonic Matter

18/March/2017

CBM-STAR Joint Workshop TU Darmstadt

How Low in Energy Should We Go? → < 7.7 GeV

All proposed RHIC energy scans recognize the need to study baryon dense matter

But low energies have proven to be difficult for the collider

→ Internal fixed target test run. 1.3 M Au+Au events at 4.5 GeV Slide 5 of 23

Energy Steps for BES-II

BES Phase II is planned for two 24 cryo-week runs in 2019 and 2020 2020 2019 We have 14.5 √S_{NN} (GeV) 7.7 9.1 11.5 19.6 been told 250 370 $\mu_{\rm B}$ (MeV) 420 315 205 also to develop a **BES I (MEvts)** 11.7 4.3 24 36 plan for a total of 20 0.25 1.7 Rate(MEvts/day) 2.4 4.5 weeks in FY 19/20 1.5 BES | \mathcal{L} (1×10²⁵/cm²sec) 0.13 2.1 4.0 Beam Energy 230 300 **BES II** (MEvts) 100 160 400 steps have been chosen 3 eCooling (Factor) 4 4 3 4 to keep the $\mu_{\rm B}$ step < 50 5.5 Beam Time (weeks) 12 5.0 9.5 4.5 MeV With electron cooling Without cooling

Daniel Cebra 18/March/2017

Low Energy Electron Cooling at RHIC

TU Darmstadt

Slide 7 of 23

The STAR Upgrades → BES-II and FXT

inner TPC

upgrade Endcap TOF / Event Plane Detector

iTPC Upgrade:

- Rebuilds the inner sectors of the TPC
- Continuous Coverage
- Improves dE/dx
- Extends η coverage to
- 1.5 (2.2 for FXT)
- Lowers p_T cut-in from 125 MeV/c to 60 MeV/c
- Ready in 2019

EndCap TOF Upgrade:

- Rapidity coverage is critical
- PID at forward rapidity
- Allows higher energy range

of FXT program

- CBM/FAIR
- Ready 2019

EPD Upgrade:

- Improves trigger
- Reduces background

• Allows a better and independent reaction plane measurement critical to BES and FXT

• Ready 2018

Daniel Cebra 18/March/2017 CBM-STAR TU Darmstadt

iTPC Schedule summary

Calendar Year		20)16			20)17			20)18			20)19	
	Q1	Q2	Q3	Q4												
Mechanical																
padplane																
Strongback production																
Padplane Assembly																
Assemble MWPC																
Sector Installation																
Electronics																
RDO																
SAMPA																
FEE																
Electronics installation																
Roll-in and commisioning																
Insertion Tool																

- Current schedule has STAR ready for data taking March 2019, with ~1.5 month of commissioning.
- Single sector tested in run-18
- Key goal of project is to have upgrade complete for Run-19.
- Critical path goes through electronics path

 a) (SAMPA chip)

b) sector production installation, and testing & commissioning

EPD Prototypes in FY 16 and 17 → Full Detector in 2018

Daniel Cebra 18/March/2017

CBM-STAR Joint Workshop TU Darmstadt

Slide 12 of 23

- R_{CP} of high p_T hadrons (up to 4.5 GeV), rapidity dependence
- Elliptic Flow of the phi meson, rapidity dependence
- Local Parity Violation studies (CME)
- Directed flow as a function for impact parameter and rapidity
- As HBT (proton-proton)
- Net proton higher moments ($\kappa\sigma^2$)
- Dileptons down to 7.7 GeV

Fixed Targt Program

Slide 14 of 23

First Dedicated Au + Au FXT Test Run In 2015 $\sqrt{s_{NN}} = 4.5 \text{ GeV}$

- 1.3 million events, top 30% central trigger
- Filled trigger bandwidth → DAQ limited
- 1 mm thick (4% interaction probability) gold foil target

Daniel Cebra 18/March/2017

CBM-STAR Joint Workshop TU Darmstadt

TPC Pion Spectra and dN/dy

π^{-} Rapidity Density

18/March/2017

ZBM-STAR Joint Workshop TU Darmstadt

Slide 17 of 23

Directed Flow Comparison Across Experiments and Energies

- First π results shown for this energy range.
- The mesons continue the trend of negative flow seen at higher energies.
- Protons and lambdas are consistent with positive flow indicative of compression.

Pion HBT Results

• Consistency with AGS results

E866 PRC66 (2002) 054096

 As the collision energy rises in the FXT regime, compression reduces the source size and increases the baryon density, whereas the BES collider regime shows increased longitudinal expansion

ALICE PLB 696 (2011) 328

Daniel Cebra 18/March/2017

CBM-STAR Joint Workshop TU Darmstadt

Slide 19 of 23

FXT Program

Collider Energy	Fixed- Target Energy	Single beam AGeV	Center- of-mass Rapidity	μ _в (MeV)
62.4	7.7	30.3	2.10	420
39	6.2	18.6	1.87	487
27	5.2	12.6	1.68	541
19.6	4.5	8.9	1.52	589
14.5	3.9	6.3	1.37	633
11.5	3.5	4.8	1.25	666
9.1	3.2	3.6	1.13	699
7.7	3.0	2.9	1.05	721
5.0	2.5	1.6	0.82	774

• Data rate is DAQ limited

• Would need 100 Million Events at each energy to make the sensitivity of BES-II

• Roughly one to two days per energy

Daniel Cebra 18/March/2017

CBM-STAR Joint Workshop TU Darmstadt

Slide 20 of 23

- Excitation functions for multi-strange baryons
- Excitation function and Flow of the phi meson
- Local Parity Violation studies (CME)
- Directed flow excitation function for (π , K, antip, Λ)
- As HBT (2π) systematics
- Net-p, net-K, net-Q higher moments ($\kappa\sigma^2$)
- Study of the Hyper-triton lifetime

Timeline

2017	
	Beam use Request due May 15, defended June 15
	eTOF, EPD prototypes
2018	
	EPD fully commissioned
	iTPC prototype sector
	27 GeV Au+Au Run
	100 M events at 3.5 GeV FXT
2019	
	eTOF, iTPC fully commissioned
	electron beam cooling commissioning
	19.5 GeV (FXT 4.5)
	14.5 GeV (FXT 3.9)
	Dedicated FXT runs at 7.7, 6.2 and 5.2
2020	
	7.7 GeV (FXT 3.0)
	9.1 GeV (FXT 3.2)
	11.5 GeV (FXT 3.5)

Conclusions

- Results from the first Beam Energy Scan at RHIC built the case and defined the best search range for BES-II
- Key measurements need more data (v_2 of ϕ , dileptons)
- Detector upgrades in progress will extend coverage \rightarrow physics reach ($\kappa\sigma^2$)
- Fixed-target program will extend energy (μ_B) reach of BES program \rightarrow coverage of upgrade detectors needed

Extras

Daniel Cebra 18/March/2017 CBM-STAR Joint Workshop TU Darmstadt

Slide 24 of 23

Beam Energy Scan Theory (BEST) Collaboration

"Fixed-term, multi-institution collaboration established to investigate a specific topic in nuclear physics of special interest to the community"

Daniel Cebra 18/March/2017 CBM-STAR Joint Workshop TU Darmstadt

Slide 26 of 23

Exploring the Phase Diagram of QCD Matter

	Wha	at was known prior to the RHIC Be	eam Energy Scan Program?				Chemical	Pred.
	1)	High Energy Heavy-ion Collisions	→ partonic matter			Energy	Potential	Temp.
	2)	Highest energies transition is	a cross over			(GeV)	μ_{B}	(MeV)
	3)	At increased $\mu_{\rm B}$, there might be a	first-order phase transition		LHC	2760.0	2	166.0
	4)	And if so, there should be a critic	cal point		RHIC	200.0	24	165.9
					RHIC	130.0	36	165.8
		ဖြို့ခ္တိ 📮 62.4 Gev 🧞 Qua	rk-Gluon Plasma		RHIC	62.4	73	165.3
	300	일 월 🖉 🥁 39 GeV 💊	BES program searches for:		RHIC	39.0	112	164.2
	500]" <i> 1</i> " 🔍	• Turn-off of OGP signatu	ires	RHIC	27.0	156	162.6
		💋 27 GeV 🏂	• First order phase transi	tion	RHIC	19.6	206	160.0
S		📥 19.6 GeV 🗞	Critical point		SPS	17.3	229	158.6
Me		14.5 GeV			RHIC	14.5	262	156.2
re (200	11.5 GeV	2010: 62.4, 39, 11.5	7.7	SPS	12.4	299	153.1
ratu		📙 🚺 🖌 🖉 🝎 7.7 Gev 🍆	2011 , 10 6, 27 GoV	,	RHIC	11.5	316	151.6
Ibei			2011. 19.0, 27 Gev		SPS	8.8	383	144.4
Ten		Mical Poi	2014: 14.5 GeV		RHIC	7.7	422	139.6
					SPS	7.7	422	139.6
	100	Ship Ship	Color Super		SPS	6.4	476	131.7
		Kinetic Freeze-out	conductor		AGS	4.7	573	114.6
		Hadronic Gas	24 · 27		AGS	4.3	602	108.8
			lion		AGS	3.8	638	100.6
	0				AGS	3.3	686	88.9
		0 250 500 750	1000		AGS	2.7	752	70.4
		Baryon Chemical Potenti	al μ _B (MeV)		SIS	2.3	799	55.8

Daniel Cebra 18/March/2017

CBM-STAR Joint Workshop TU Darmstadt

Slide 27 of 23

How Collision Energy Changes μ_{B}

- deBroglie wavelength of constituent partons is effected by the beam energy.
- Determines whether a parton images:
 - A. The whole nucleus
 - B. Individual nucleons
 - C. Individual partons

At lower energy, nucleons are opaque, and the valence quarks are stopped in the fireball. Excess quarks \rightarrow higher μ_B At higher energy, nucleons are transparent, and the valence quarks are pass through and exit the fireball. Equal quarks and anti-quarks \rightarrow lower μ_B

What Was Learned in the Earlier Scans?

CBⅣ

- Summary of AGS, SPS, and early **RHIC Results**
- Inclusive observables \rightarrow onset of deconfinement at 7-8 GeV.
- The observables suggest a change in the nature of the system.
- More discriminating studies were needed to understand the nature of the phase transition and to search for critical behavior.
- It is best to study regions above ٠ and below the possible onset energy.

Daniel Cebra

18/March/2017

early stage hits transition line, observed signals: kink, horn, step Results: APP B30 2705 (99), PR C77 024903 (08) the dale sound velocity from width of pion rapidity spectra nucl-th/0611001 Alle

Slide 29 of 23

Setting the Scene

Daniel Cebra 18/March/2017

CBM-STAR Joint Workshop TU Darmstadt

Slide 30 of 23

Disappearance of QGP Signatures - R_{CP}

• R_{CP} for hadrons and for identified particles can provide a measure of partonic energy loss in the medium.

• Not sufficient reach to search for evidence of high p_T suppression below 19.6 GeV

Stopped Baryons
 complicate inclusive R_{CP}
 measurements

pQCD calculations
 show high p_T
 suppression

 Hybrid calculations describe the low p_T behavior

Daniel Cebra 18/March/2017

Chiral Phase Transition

18/March/2017

CBM-STAR Joint Workshop TU Darmstadt

Slide 32 of 23

Search for 1^{st} Order Phase Transition – v_1

Daniel Cebra 18/March/2017

CBM-STAR Joint Workshop TU Darmstadt

Search for the Critical Point – $\kappa\sigma^2$

Daniel Cebra 18/March/2017

CBM-STAR Joint Workshop TU Darmstadt

BES Phase I – What have We Learned

- \bullet The BES at RHIC spans a range of μ_{B} that could contain features of the QCD phase diagram.
- Signatures consistent with a parton dominated regime either disappear, lose significance, or lose sufficient reach at the low energy region of the scan.
- Dilepton mass spectra show a broadening consistent with models including hadron gas and quark-gluon plasma components
- •There are indicators pointing towards a softening of the equation of state which can be interpreted as evidence for a first order phase transition.
- The higher moment fluctuation is sensitive to critical phenomena, but these analyses place stringent demands on the statistics.

Open Questions

Studying the Phase Diagram of QCD Matter at RHIC

A STAR white paper summarizing the current understanding and describing future plans

01 June 2014

Beam Energy Scan II (2019-2020)

Select the most important energy range → 5 to 20 GeV

Improve significance→Long runs, higher luminosity

Refine the signals➔ Detector improvements

Daniel Cebra 18/March/2017 11.5 GeV

CBM-STAR Joint Workshop TU Darmstadt

Reduction in Errors with Improved Statistics

Daniel Cebra 18/March/2017

CBM-STAR Joint Workshop TU Darmstadt

Slide 38 of 23

Target Design 2014 and 2015

Target design:

Gold foil 1 mm Thick ~1 cm High ~4 cm Wide 210 cm from IR

Daniel Cebra 18/March/2017

CBM-STAR Joint Workshop TU Darmstadt

Slide 39 of 23

Run 14 and 15 Setup

18/March/2017

CBM-STAR Joint Workshop TU Darmstadt

Slide 40 of 23

What do the iTPC and eTOF do for Fixed Target?

18/March/2017

CBM-STAR Joint Workshop TU Darmstadt

Slide 42 of 23

Acceptance

 π^{-} Acceptance **Proton Acceptance** 2.5 b_T (GeV/c) 4 (c)/A9D) ⁴ d 10 10 2.5 1.5 **10**² 102 1.5 10 10 0.5 0.5 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 (0Ľ 2 0 -1.6 -1.8 0 2 0

Daniel Cebra
18/March/2017

Collision	Single	Fixed	Single	Center of		
Energy	Beam	Target	Beam	Mass	Chemical	Events
(GeV)	Energy	Root s	Rapidity	Rapidity	Potential μ_B	(Millions)
200	100	13.713	5.369	2.685	0.276	NA
130	65	11.083	4.938	2.469	0.325	NA
62.4	31.2	7.737	4.204	2.102	0.420	100
39	19.5	6.170	3.734	1.867	0.487	100
27	13.5	5.185	3.366	1.683	0.541	100
19.6	9.8	4.468	3.042	1.521	0.589	100
14.5	7.25	3.904	2.741	1.370	0.633	100
11.5	5.75	3.528	2.507	1.253	0.666	100
9.1	4.55	3.196	2.269	1.134	0.699	100
7.7	3.85	2.985	2.097	1.049	0.721	100
5.0	2.50	2.320	1.644	0.822	0.774	100

Run 14 and 15 Setup

18/March/2017

CBM-STAR Joint Workshop TU Darmstadt

Slide 45 of 23

Comparison of Facilities

Facilty	RHIC BESII	SPS	NICA	SIS-100 SIS-300	J-PARC HI
Exp.:	STAR	NA61	MPD	CBM	JHITS
	+FXT		+ BM@N		
Start:	2019-20	2009	2020	2022	2025
	2018		2017		
Energy:	7.7–19.6	4.9-17.3	2.7 - 11	2.7-8.2	2.0-6.2
√s _{NN} (GeV)	2.5-7.7		2.0-3.5		
Rate:	100 HZ	100 HZ	<10 kHz	<10 MHZ	100 MHZ
At 8 GeV	2000 Hz				
Physics:	CP&OD	CP&OD	OD&DHM	OD&DHM	OD&DHM
	Collider	Fixed Target	Collider	Fixed Target	Fixed Target
	Fixed larget	Lighter ion	Fixed larget	= Critical Point	
		collisions	0	D = Onset of Deco	onfinement
Daniel Cebra		CBM-STAR	Joint Workshop		Slide 46 of 22

TU Darmstadt

BES Phase II is planned for two 24 cryo-week runs in 2019 and 2020

√S _{NN} (GeV)	7.7	9.1	11.5	14.5	19.6
μ_{B} (MeV)	420	370	315	250	205
BES I (MEvts)	4.3		11.7	24	36
Rate(MEvts/day)	0.25		1.7	2.4	4.5
BES I <i>L</i> (1×10 ²⁵ /cm ² sec)	0.13		1.5	2.1	4.0
BES II (MEvts)	100	160	230	300	400
Improvement (X)	4	4	4	3	3
Beam Time (weeks)	12	9.5	5.0	5.5	4.5

Yields of Hadrons -> Mapping the Phase Boundary

Acceptance of π , K, p is good to midrapidity at all FXT energies. Acceptance for weak decay parents should be good as well.

Measurements can be extrapolated to 4π

Will be able to extend the low energy limits of measurements of most strange hadrons

 4π strange hadron yields are needed for chemical equilibrium models to determine T and μ_B

Daniel Cebra 18/March/2017

Hypernuclei

Perfect energy range to map out the production of ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H

Previously only measured at two energies

Dynamic range will exclude searches for doubly strange hypernuclei

Daniel Cebra 18/March/2017

CBM-STAR Joint Workshop TU Darmstadt

Kaon and Lambda Spectra and dN/dy

Daniel Cebra 18/March/2017

CBM-STAR Joint Workshop TU Darmstadt

Slide 50 of 23

TU Darmstadt

Slide 51 of 23

Directed flow of kaons and lambdas at $\sqrt{s_{NN}}$ = 4.5 GeV

- Flow of kaons (mesons) is negative.
- Flow of lambdas (baryons) is positive.

Elliptic Flow of Pions and Protons

18/March/2017

TU Darmstadt

Slide 53 of 23

Dynamical Relative Charge Number Fluctuations

18/March/2017

CBM-STAR Joint Workshop TU Darmstadt

Daniel Cebra 18/March/2017

CBM-STAR Joint Workshop TU Darmstadt

Slide 55 of 23