Proton-Number Fluctuations in HADES: Reconstruction of higher moments

Romain Holzmann,

GSI Helmholtzzentrum Darmstadt. for the HADES collaboration QGP MUCLEİ HADES at GSI

SIS 18 energy regime:

- beam energies 1-2 GeV/u
- moderate T, high μ_B
- baryon dominated

Outline:

- ➤ HADES: Au+Au at 1.23 GeV/u
- > Net proton nb. fluctuations
 - efficiency corrections
 - volume fluct, effects
 - fragments, ie bound protons
- > Summary & Outlook:

Fluctuations probe features of QCD phase diagram

Crossing features of the QCD phase-diagram (phase boundaries, CEP) is expected to result in:

- → diverging susceptibilities & correlation length
- → "extra" fluctuations of conserved quantities (e.g. baryon nb, charge, strangeness)
- → observable discontinuities of the higher moments of particle number distributions, visible e.g. in a beam energy scan!

(see e.g. B. Friman et al, EPJC 71 (2011) 1694)

Fluctuations probe features of QCD phase diagram

Crossing features of the QCD phase-diagram (phase boundaries, CEP) is expected to result in:

- → diverging susceptibilities & correlation length
- → "extra" fluctuations of conserved quantities (e.g. baryon nb, charge, strangeness)
- → observable discontinuities of the higher moments of particle number distributions, visible e.g. in a beam energy scan!

(see e.g. B. Friman et al, EPJC 71 (2011) 1694)

→ Needs high-statistics data!

The HADES detector at GSI

Particle ID in HADES

Velocity vs. p

MDC & TOF dE/dx dE/dx vs. p

Hadron ID based on

- ToF
- Momentum
- dE/dx

Proton distributions in Au+Au at $\sqrt{s} = 2.41 \, GeV$

HADES $y - p_t$ coverage for protons

$$y_{cm} = 0.74$$

Proton mt spectra

Proton multiplicity distributions

Analysis based on $40 \cdot 10^6\,$ Au+Au evts divided into 4 centrality classes

(I) Efficiency corrections

Note that efficiency = $acc \times det$. eff x rec. eff!

- 1. Correct the cumulants
 - A. Bzdak & V. Koch, PRC 86 (2012); X. Luo, PRC 91 (2015);M. Kitasawa, PRC 93 (2016)
- Correct measured distributions (bayesian unfolding)
 Garg et al., J. Phys. G: Nucl. Part. Phys. 40 (2013)

- → we have investigated both methods
 - 1. in simulations based on UrQMD evts filtered with full HADES response
 - 2. in real Au+Au data

Hades efficiencies vs. p_t, y, centrality & N_{track}/sector

- → Efficiency drops by up to 15% with occupancy, need to do a dynamic efficiency correction!
- → Model $\epsilon = \epsilon(N_{track}, sector)$ to correct evt-by-evt!

We verified this correction scheme in full detector simulations using **54** separate acc. bins $(\Delta y \times \Delta p_t \times sector)$.

Method 1: Evt-by-evt efficiency correction of κ_n

Efficiency depends on particle, centrality, pt & y...

correct by phase-space bin and evt-wise!

Bzdak & Koch, PRC 91 (2015) Tang & Wang, PRC 88 (2013) Xiaofeng Luo, PRC 91 (2015) Masakiyo Kitasawa, PRC 93 (2016)

$$(1) \begin{array}{c} F_{i,k}(N_{p},N_{\bar{p}}) = \left\langle \frac{N_{p}!}{(N_{p}-i)!} \frac{N_{\bar{p}}!}{(N_{\bar{p}}-k)!} \right\rangle = \sum\limits_{N_{p}=i}^{\infty} \sum\limits_{N_{\bar{p}}=k}^{\infty} P(N_{p},N_{\bar{p}}) \frac{N_{p}!}{(N_{p}-i)!} \frac{N_{\bar{p}}!}{(N_{\bar{p}}-k)!} \\ f_{i,k}(n_{p},n_{\bar{p}}) = \left\langle \frac{n_{p}!}{(n_{p}-i)!} \frac{n_{\bar{p}}!}{(n_{\bar{p}}-k)!} \right\rangle = \sum\limits_{n_{p}=i}^{\infty} \sum\limits_{n_{\bar{p}}=k}^{\infty} p(n_{p},n_{\bar{p}}) \frac{n_{p}!}{(n_{p}-i)!} \frac{n_{\bar{p}}!}{(n_{\bar{p}}-k)!} \end{array}$$

$$F_{i,k}(N_{p},N_{\bar{p}}) = \frac{f_{i,k}(n_{p},n_{\bar{p}})}{(\varepsilon_{p})^{i}(\varepsilon_{\bar{p}})^{k}}$$

$$F_{i,k}(N_p, N_{\bar{p}}) = \frac{f_{i,k}(n_p, n_{\bar{p}})}{(\varepsilon_p)^i (\varepsilon_{\bar{p}})^k}$$

$$A_{i,k}\left(x_{1},\ldots,x_{i};\bar{x}_{1},\ldots,\bar{x}_{k}\right) \ = \ \left\langle N(x_{1})[N(x_{2})-\delta_{x_{1},x_{2}}]\ldots[N(x_{i})-\delta_{x_{1},x_{i}}-\ldots-\delta_{x_{i-1},x_{i}}] \right.$$

$$\left. \begin{array}{c} \bar{N}(\bar{x}_{1})[\bar{N}(\bar{x}_{2})-\delta_{\bar{x}_{1},\bar{x}_{2}}]\ldots[\bar{N}(\bar{x}_{k})-\delta_{\bar{x}_{1},\bar{x}_{k}}-\ldots-\delta_{\bar{x}_{k-1},\bar{x}_{k}}] \right\rangle \quad \text{"local factorial actorial actorial moments"} \\ a_{i,k}\left(x_{1},\ldots,x_{i};\bar{x}_{1},\ldots,\bar{x}_{k}\right) \ = \ \left\langle n(x_{1})[n(x_{2})-\delta_{x_{1},x_{2}}]\ldots[n(x_{i})-\delta_{x_{1},x_{i}}-\ldots-\delta_{x_{i-1},x_{i}}] \right. \\ \bar{n}(\bar{x}_{1})[\bar{n}(\bar{x}_{2})-\delta_{\bar{x}_{1},\bar{x}_{2}}]\ldots[\bar{n}(\bar{x}_{k})-\delta_{\bar{x}_{1},\bar{x}_{k}}-\ldots-\delta_{\bar{x}_{k-1},\bar{x}_{k}}] \right\rangle.$$

(3)
$$F_{i,k} = \sum_{x_1,...,x_i} \sum_{\bar{x}_1,...,\bar{x}_k} A_{i,k} (x_1,...,x_i; \bar{x}_1,...,\bar{x}_k) f_{i,k} = \sum_{x_1,...,x_i} \sum_{\bar{x}_1,...,\bar{x}_k} a_{i,k} (x_1,...,x_i; \bar{x}_1,...,\bar{x}_k)$$

$$F_{i,k} = \sum_{x_1, \dots, x_i} \sum_{\bar{x}_1, \dots, \bar{x}_k} \underbrace{\frac{a_{i,k}(x_1, \dots, x_i; \bar{x}_1, \dots, \bar{x}_k)}{\epsilon(x_1) \dots \epsilon(x_i)\bar{\epsilon}(\bar{x}_1) \dots \bar{\epsilon}(\bar{x}_k)}}$$

correct evt-by-evt with dynamic $\varepsilon = \varepsilon(N)$

Method 2: Unfold the multiplicity distribution

Response matrix of the system: (obtained from simul)

$$\mathbf{N}_{\text{recons}} = \mathbf{A} \cdot \mathbf{N}_{\text{input}}$$

Tested on simulated proton spectra accepted in HADES.

All moments reproduced within statistical error bars!

Unfolding in a nutshell: regularize A

<u>Literature:</u> G. D'Agostino, Nucl. Instr. Meth. A 362 (1995) 487.

- S. Schmitt, J. Instr. 7 (2012) T10003.
- P. Garg et al., J. Phys. G 40 (2013) 055103.

Problem:

 $y = A \cdot x$ x = true signal, A = response matrix, y = measured signal

Knowing y and A, find x.

Unfortunately, **A** is often quasi-singular and can not be inverted (ill-conditioned problem!).

Solution:

Minimize via least-squares procedure the "Lagrangian" $L(x,\lambda)$:

$$\mathcal{L}(x,\lambda) = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3$$
 minimization
$$\mathcal{L}_1 = (\boldsymbol{y} - \mathbf{A}\boldsymbol{x})^\mathsf{T} \mathbf{V}_{\mathbf{y}\mathbf{y}}^{-1} (\boldsymbol{y} - \mathbf{A}\boldsymbol{x}),$$

$$\mathcal{L}_2 = \overline{\tau^2} (\boldsymbol{x} - f_b \boldsymbol{x}_\mathbf{o})^\mathsf{T} (\mathbf{L}^\mathsf{T} \mathbf{L}) (\boldsymbol{x} - f_b \boldsymbol{x}_\mathbf{o}),$$
 Tikhonov regularization
$$\mathcal{L}_3 = \lambda (Y - \boldsymbol{e}^\mathsf{T} \boldsymbol{x})$$
 area constraint

ROOT implementation:

TUnfold, TUnfoldSys, TUnfoldDensity

(II) Volume fluctuations effects

→ Effect of volume fluctuations due to centrality selection on (reduced) cumulants of the net baryon number discussed by Skokov, Friman & Redlich in PRC 88 (2013):

$$c_1 = \kappa_1,$$

$$c_2 = \kappa_2 + \kappa_1^2 v_2,$$

$$c_3 = \kappa_3 + 3\kappa_2 \kappa_1 v_2 + \kappa_1^3 v_3,$$

$$c_4 = \kappa_4 + (4\kappa_3 \kappa_1 + 3\kappa_2^2) v_2 + 6\kappa_2 \kappa_1^2 v_3 + \kappa_1^4 v_4,$$

- k_n baryon number cumulants
- c_n volume affected cumulants
- v_n volume fluctuations cumulants

- → Take volume fluctuations v_n from model, e.g. Glauber or transport, adjusted to observable used to define centrality in a given experiment, and correct data.
 - → Effect of centrality selection investigated with UrQMD simul by G. Westfall in PRC 92 (2015)
- → Discussed in more detail by PBM, Rustamov & Stachel NPA 960 (2017) 114

Volume fluctuation effects on cumulants

Glauber simulation of N_{wounded} + Negative Binomial model of particle production Braun-Munzinger, Rustamov & Stachel, Nucl. Phys. A 960 (2017) 114

→ partial cancellation of volume terms at large N_w?

13

Choice of phase-space bite for fluctuation analysis

→ Need to select a phase-space bite which avoids spectators and stays within the HADES acceptance, but far enough from Poisson limit!

HADES $y - p_t$ coverage for protons

phase-space bite used in fluctuation analysis:

 $y = y_0 \pm 0.2$ and $p_t = 0.4 - 1.6$ GeV/c

Checking the Poisson limit: κ_n vs. Δy

- → Expect to approach **Poisson limit** for narrow enough phase-space bin!
- → Shown here for our Au+Au proton data with unfolding & volume correction:

phase-space bin:
$$y_{acc} = y_0 \pm \Delta y$$
 $p_t = 0.4 - 1.6~GeV/c$

$$S \cdot \sigma \to 1$$
 and $\kappa \cdot \sigma^2 \to 1$ for $\Delta y \to 0$

Fully corrected scaled moments vs. centrality

HADES 1.23 GeV/u Au+Au proton moments:

Error bands correspond to 5% systematic error on proton efficiencies.

- → Scaled cumulants deviate from Poisson with ↑ centrality
- \rightarrow Volume corrections on κ_4/κ_2 smallest for most central

Comparison with STAR BES-I

STAR analysis: Xiaofeng Luo et al., PoS (CPOD2014) 019

- red/black = unfolding (preferred method) + vol. flucs. corr.
- green = evt-by-evt eff correction of factorial moments + vol. flucs. corr.

(III) What about bound protons?

Systematics of d/p from STAR collaboration (QM2017)

HADES 1.23 GeV/u Au+Au data

 $d/p \approx 0.3 - 0.4$ (analysis in progress)

- → Sizeable fraction of protons are bound in fragments: d, t, He, etc.
 - How do they contribute to baryon-number fluctuations?
 - Should they be taken into account in a beam-energy scan?
 - Deuteron nb. fluctuations in Au+Au

d / ⁴He separation in HADES MDC via dE/dx

Fully corrected scaled moments of N_p + N_d

(ongoing analysis...)

HADES 1.23 GeV/u Au+Au proton+deuteron moments:

- efficiency corr. via unfolding
- volume flucs, corr.
- error bands = 5% uncertainty on particle eff.

CBM-STAR Workshop M

Summary and Outlook

- Analyzed proton nb fluctuations in hi-stat Au+Au evt sample at $\sqrt{s_{NN}} = 2.41 \; GeV$
- → 1st time this kind of analysis has been done at low energies
- Systematic study of experimental & instrumental effects:
 - use of fine grained y-pt bins for eff. corr.
 - evt-by-evt changes of efficiency
 - large volume fluctuations due to centrality selection
- Started to investigate contribution of bound protons
- interpretation of results needs help from theory (e.g. Bzdak-Koch couplings?)
- → To be continued in future runs at FAIR (phase 0 and beyond)

Thrift Shop

Proton cumulants $\kappa_n vs N_{part}$ in 1.23 GeV/u Au+Au

Proton cumulants from unfolding + volume corrections

Proton & deuteron coverage

Fully corrected scaled moments of deuterons

(ongoing analysis...)

HADES 1.23 GeV/u Au+Au deuteron moments:

- efficiency corr. via unfolding
- volume flucs, corr.
- error bands = 5% uncertainty on deuteron eff.

CBM-STAR Workshop March 18, 2017 TU Darmstadt

25

HADES deuterons compared with STAR net p

(ongoing analysis...)

HADES: - efficiency corr. via unfolding

- volume flucs. corr.
- no realistic errors yet!

HADES p+d compared with STAR net p

(ongoing analysis...)

STAR analysis: Xiaofeng Luo et al., PoS (CPOD2014) 019

HADES: - efficiency corr. via unfolding

- volume flucs. corr.

- no realistic errors yet!

N_{part} from Glauber fits to hit/track observables

adjusted to hit distribution in TOF & RPC:

4 centrality bins used within HADES LVL1 trigger

adjusted to track distribution in MDC:

→ used as estimate for FW selection

N_{part} fluctuations, also called volume fluctuations, must be corrected for in the data!

Pion production in 1.23 GeV/u Au+Au

Pseudo-scalar mesons measured in HADES via photon conversion:

$$\pi^0$$
, $\eta \rightarrow 2 \gamma \rightarrow e^+e^-e^+e^-$

 $\rightarrow \pi^0$ consistent with $\frac{1}{2}(\pi^+ + \pi^-)$

Pion production vs. centrality selection method

charged pion distributions:

 \rightarrow expect very similar N_{part} distributions for 3 selection methods

Volume corrections (choice of centrality selection)

Volume corrections (evt-by-evt vs. unfolding)

Poisson limit (w/o corr. volume flucs.)

- → Expect to approach **Poisson limit** for narrow enough phase-space bin!
- → Checked on Au+Au proton data with the unfolding method:

phase-space bin: $y_{acc} = y_0 \pm \Delta y$ $Sk \cdot \sigma \rightarrow 1$ and $\kappa \cdot \sigma^2 \rightarrow 1$ for $\Delta y \rightarrow 0$