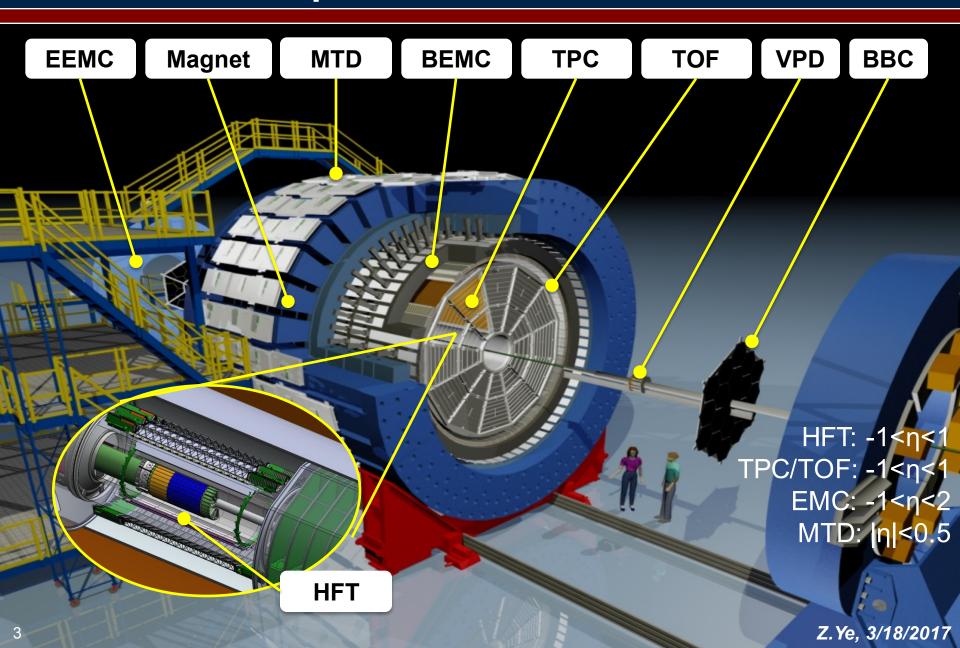
Forward Upgrade and Possible Use for Fixed Target

CBM-STAR Joint Workshop, TU Darmstadt, 3/18/2017

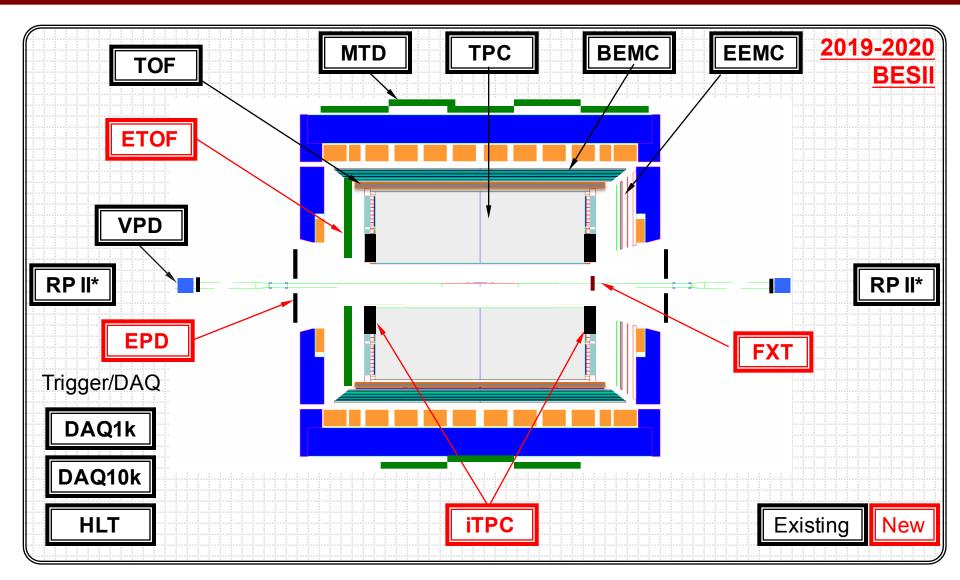
Zhenyu Ye^{1,2}

- 1. University of Illinois at Chicago
- 2. Central China Normal University

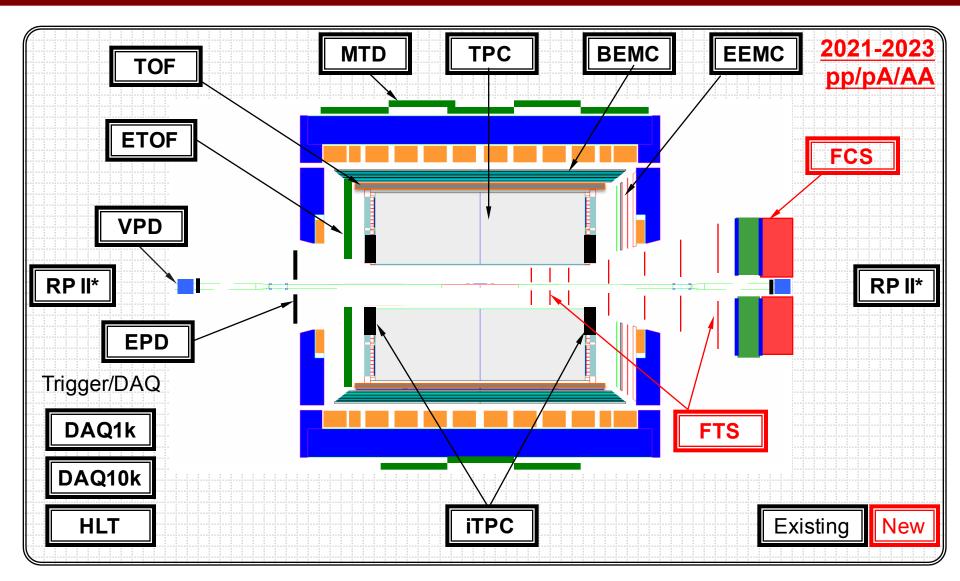


Outline

- STAR Forward Upgrade
 - STAR and RHIC run and upgrade plans
- Physics Perspective
 - p+p, p+A and Au+Au collisions
 - possible use for fixed target?
- Summary and Outlook

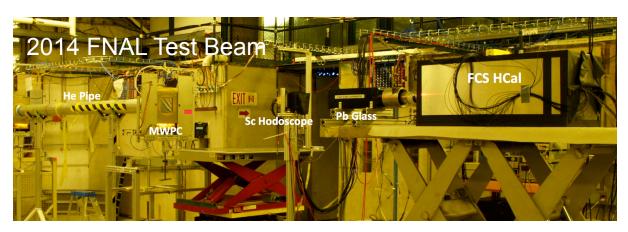

STAR Experiment in 2014-2016

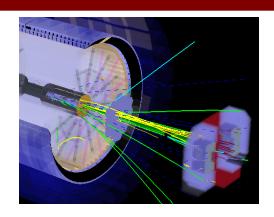
RHIC and STAR Run Plan

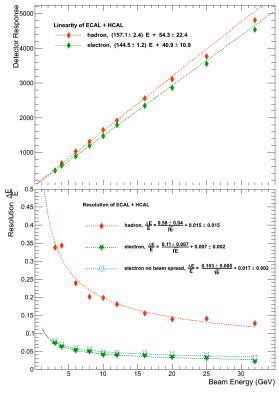

Years	Beam Species and Energies	Science Goals	New Systems Commissioned
2014-16	p+p, p+Au, p+Al, d+Au, He³+Au, and Au+Au	Heavy quark energy loss, flow, thermalization Quarkonium studies	STAR HFT STAR MTD
	at 200 GeV	Transverse spin physics	STAR FMS pre-shower, PHENIX MPC-EX
	15 GeV Au+Au	Extract eta/s + initial quantum fluctuations Search for QCD critical point	Electron lenses 56 MHz SRF
2017	p+p at 510 GeV	Transverse spin physics	STAR FMS post-shower (PHENIX decomissioning)
2017	Au+Au at 62 GeV	Energy dependence of parton energy loss	(FITERIAL decommosioning)
2018	⁹⁶ Ru+ ⁹⁶ Ru and ⁹⁶ Zr+ ⁹⁶ Zr at 200 GeV	Chiral Magnetic Effects	STAR EPD
2019-20	Au+Au at 5-20 GeV (BES II)	Search for QCD critical point and onset of deconfinement	STAR iTPC, eTOF Low energy e-cooling
2021	p+p at 510 GeV (?)	Low-x gluon helicity, TMD	fSTAR (?)
2022-23	p+p, p+Au, Au+Au at 200 GeV	Transverse spin physics, gluon saturation, nuclear PDF, longitudinal flow decorrelation, initial conditions, eta/s, multiple haromoics	fSTAR (?)
		Jet probe of parton transport and energy loss, Color-screening of Upsilon	sPHENIX (+fsPHENIX?)
2024-	No Runs		Transition to eRHIC
4			Z.Ye, 3/18/2017

STAR Upgrade Plan

<u>iTPC</u>: inner TPC, <u>EPD</u>: Event Plane Detector, <u>ETOF</u>: End-cap TOF, <u>FXT</u>: Fixed Target

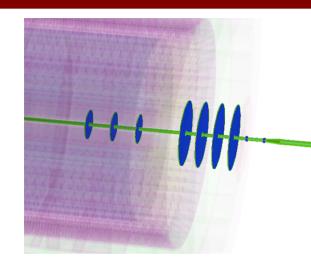

STAR Upgrade Plan

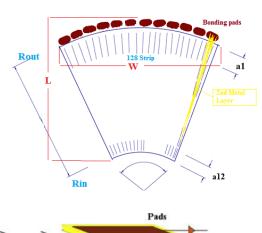


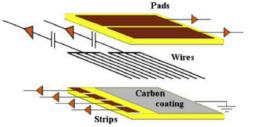

FCS: Forward Calorimeter System, **FTS:** Forward Tracking System

Forward Calorimeter Upgrade

- Requirement:
 - Full azimuthal in $2.5 < \eta < 4$
 - EM energy resolution ~ 10%/√ (E)
 - Hadronic energy resolution ~ 70%/√ (E)
- Current design (area 3x2 m², z=8-10 m):
 - EM section:
 - reuse PHENIX EMCal Pb-Sci towers
 - SiPM read out
 - Hadronic section:
 - Sandwich Fe-Sci
 - SiPM or APD read out

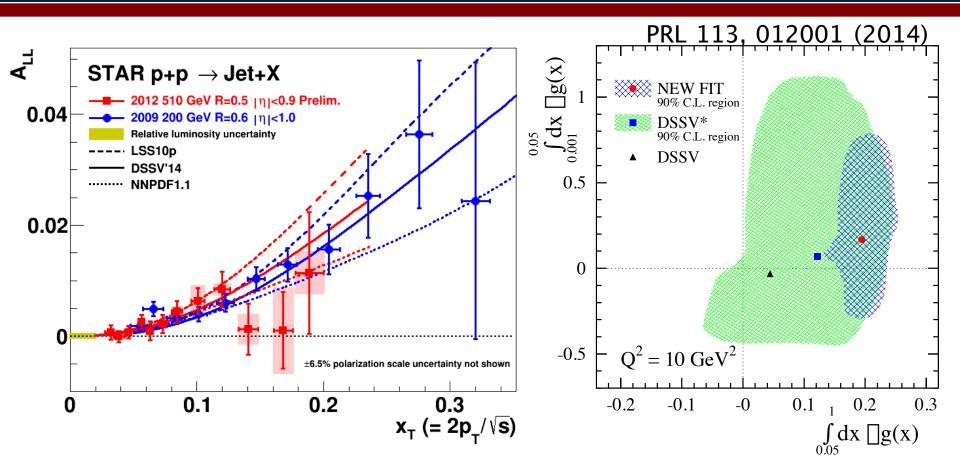






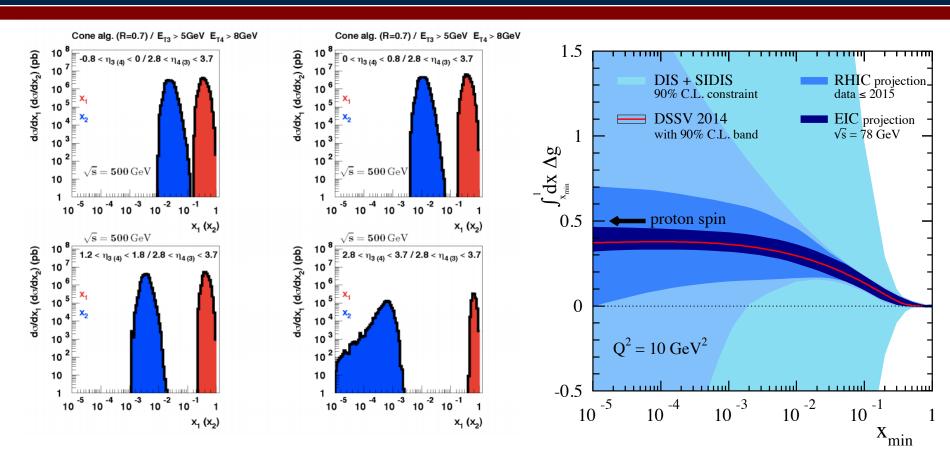
Forward Tracker Upgrade

- Requirement:
 - Full azimuthal in $2.5 < \eta < 4$
 - good resolution in ϕ for charge separation and momentum measurement
 - low material to reduce multiple scattering and conversional background
- Current design (Si only or Si+sTGC):
 - inside TPC: 3 (6) **Si** disks at z=70-140 cm
 - Single-sided double-metal pad sensor: pad size depends on (R, z) - minimum size is ~ 3 mm x 100 μm in R-φ
 - APV25 FEE, HFT-IST DAQ and cooling
 - 0.5-1.0% X₀ per plane
 - Outside TPC: 4 sTGC at z=2.4-7 m
 - Modified ATLAS orward design
 - Position resolution: <300 μm in x-y
 - 0.5% X₀ per plane

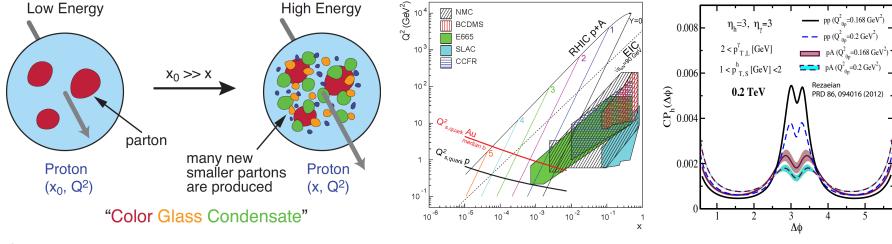


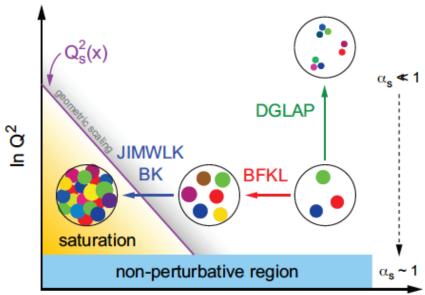
Forward Upgrade for pp/pA Physics

	Year	√s (GeV)	Delivered	Scientific Goals	Observable	Required
		1 0 510	Luminosity			Upgrade
	2017	p [†] p @ 510	400 pb ⁻¹ 12 weeks	Sensitive to Sivers effect non-universality through TMDs	A_N for γ , W^{\pm} , Z^0 , DY	A _N ^{DY} : Postshower
			12 Weeks	and Twist-3 $T_{q,F}(x,x)$ Sensitive to sea quark Sivers or ETQS function		to FMS@STAR
				Evolution in TMD and Twist-3 formalism		
				Evolution in TWD and TWISt-3 formatism	sin(A-2A-) sin(A-A-)	
				Transversity, Collins FF, linearly pol. Gluons,	$A_{UT}^{\sin(\phi_S-2\phi_h)} A_{UT}^{\sin(\phi_S-\phi_h)}$ modula-	None
				Gluon Sivers in Twist-3	tions of h^{\pm} in jets, $A_{UT}^{\sin{(\phi_S)}}$ for jets	
					A for LOW in LIDC	
				First look at GPD Eg	A_{UT} for J/ Ψ in UPC	None
	2023	р ^т р @ 200	300 pb ⁻¹	subprocess driving the large A_N at high x_F and η	A_N for charged hadrons and flavor	Yes
Se			8 weeks		enhanced jets	Forward instrum.
led			00)			
분			(3)	evolution of ETQS fct.	A_N for γ	None None
<u>_</u>			O	properties and nature of the diffractive exchange in p+p collisions.	A_N for diffractive events	None
Scheduled RHIC running	2023	p [†] Au @ 200	1.8 pb ⁻¹	What is the nature of the initial state and hadronization in	R _{nstar} direct photons and DY	P . (DV).V
C	2023	Pare	8 weeks	nuclear collisions	R _{plu} direct photons and DT	R _{pAu} (DY):Yes Forward instrum.
		VO	o meets			1 of ward instrum.
-	١ ١			Nuclear dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_s - \phi_h)}$ modulations of h^* in	None
(19)	Π/A				jets, nuclear FF	
				Clear signatures for Saturation		Yes
)			Creat signatures for Saturation	Dihadrons, y-jet, h-jet, diffraction	Forward instrum.
	2023	p [†] Al @ 200	12.6 pb ⁻¹	A-dependence of nPDF,	R _{ndi} : direct photons and DY	R _{nAl} (DY): Yes
			8 weeks	•	200	Forward instrum.
				A-dependence of TMDs and nFF	$A_{IIT}^{\sin(\phi_s-\phi_h)}$ modulations of h^* in	None
					jets, nuclear FF	
				A-dependence for Saturation		Yes
				A-dependence for Saturation	Dihadrons, γ-jet, h-jet, diffraction	Forward instrum.
	202X	p [†] p @ 510	1.1 fb ⁻¹	TMDs at low and high x	A _{UT} for Collins observables, i.e.	Yes
Po			10 weeks		hadron in jet modulations at $\eta > 1$	Forward instrum.
2 E				quantitative comparisons of the validity and the limits of	and	
ential fut running				factorization and universality in lepton-proton and proton-	mid-rapidity	None
ing fu				proton collisions	observables as in 2017 run	
Potential future running	202X	p'p@ 510	1.1 fb ⁻¹	$\Delta g(x)$ at small x	A_{LL} for jets, di-jets, h/ γ -jets	Yes
			10 weeks		at $\eta > 1$	Forward instrum.
	T-1-1-1-2	0.0	C-11 OCD	1: 4 2017 12022 1:6	1176 1 500 C - W 111	11-


Table 1-2: Summary of the Cold QCD physics program propsed in the years 2017 and 2023 and if an additional 500 GeV run would become possible.

pp/pA Forward Physics - ΔG


• Single pion and jet A_{LL} at RHIC have provided the first indication of positive contribution of the gluon polarization for x>0.05 to the proton spin.


pp/pA Forward Physics - ΔG

- Single pion and jet A_{LL} at RHIC have provided the first indication of positive contribution of the gluon polarization for x>0.05 to the proton spin.
- Di-jet A_{LL} at forward regions will provide access to lower x regime.

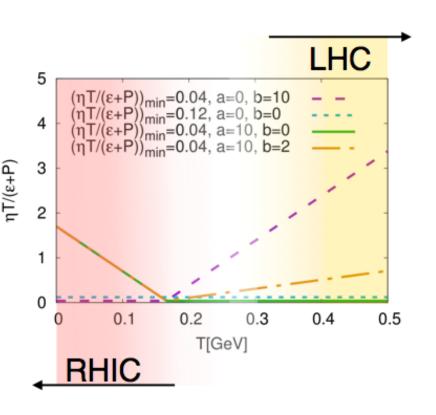
pp/pA Forward Physics - Saturation

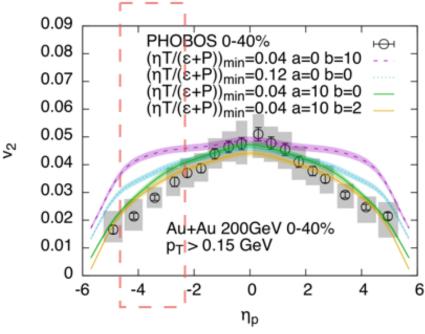
gamma-hadron correlations

- gluon saturation at low x and Q² in p+p collisions
- A-dependence of gluon saturation in p+A collisions

ln x

Forward Upgrade for AA Physics

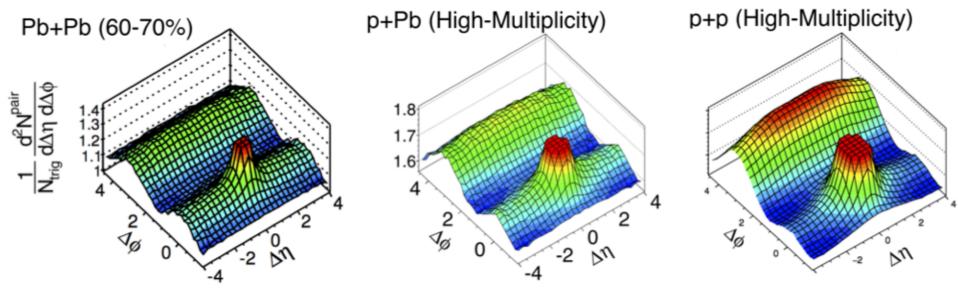

Physics Meas	urements	Longitudinal de-correlation		Mixed flow		Event Shape
Detectors	Acceptance	$C_n(\Delta \eta)$ $r_n(\eta_a, \eta_b)$	η/s(T), ζ/s(T)	Harmonics Cm,n,m+n	Ridge	and Jet- studies
Forward Calorimeter (FCS)	$2.5 < \eta < 4$ (photons, hadrons)	One of these		One of these	Good to have	One of these
Forward Tracking System (FTS)	$2.5 < \eta < 4$ (charged particles)	detectors necessary	Important	detectors necessary	Important	detectors needed

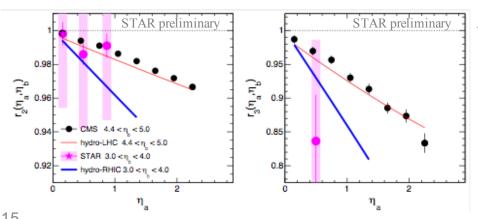

Table 2-1: Physics measurements in A+A collisions with the proposed forward upgrade and with other STAR upgrades that are relevant to those measurements.

STAR Public Note SN0648: The STAR Forward Calorimeter System and Forward Tracking System beyond BES-II

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0648

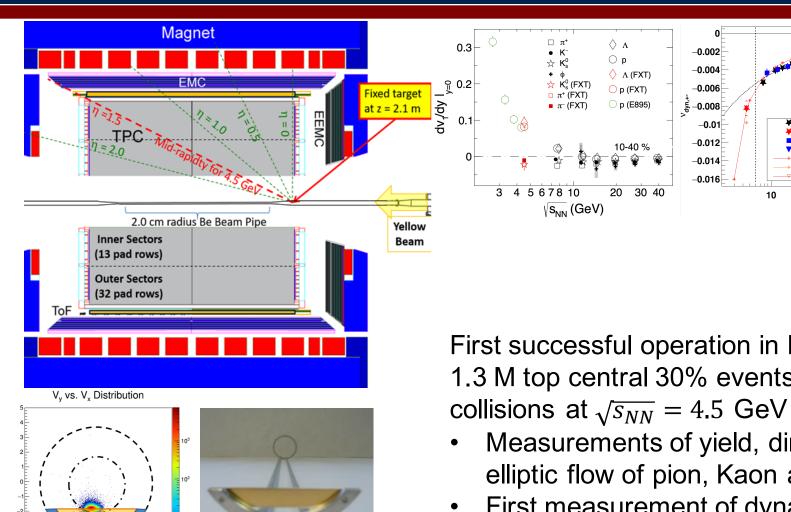
AA Forward Physics - $\eta/s(T)$




Denicol et al. PRL 116, 212301 (2016)

Effects on elliptic flow co-efficient v_2 due to different parameterization of viscosity parameter indicating a better constrain on $\eta/s(T)$ can only be performed by measurements at forward rapidity.

AA Forward Physics – Large y



Long-range ridge structure observed in the di-hadron correlation in peripheral Pb+Pb and high multiplicity p+Pb and p+p collisions at the LHC

Need precision measurements at RHIC on longitudinal invariance and full 3D fluiddynamic modeling of heavy-ion collisions

Fixed Target Program at STAR

1 mm thick (4% interaction probability) gold foil target

First successful operation in FXT mode: 1.3 M top central 30% events in Au+Au

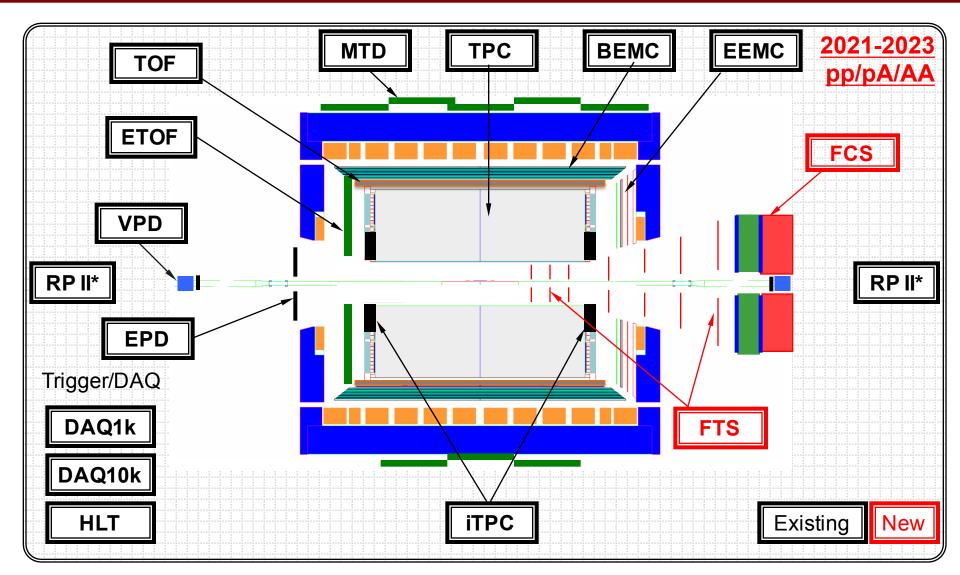
- Measurements of yield, directed and elliptic flow of pion, Kaon and Lambda.
- First measurement of dynamical charge number fluctuation for this energy range.

STAR Au+Au, 0-5%, TPC+TOF

UrQMD Au+Au (FXT), 0-10% UrQMD Pb+Pb, 0-5%

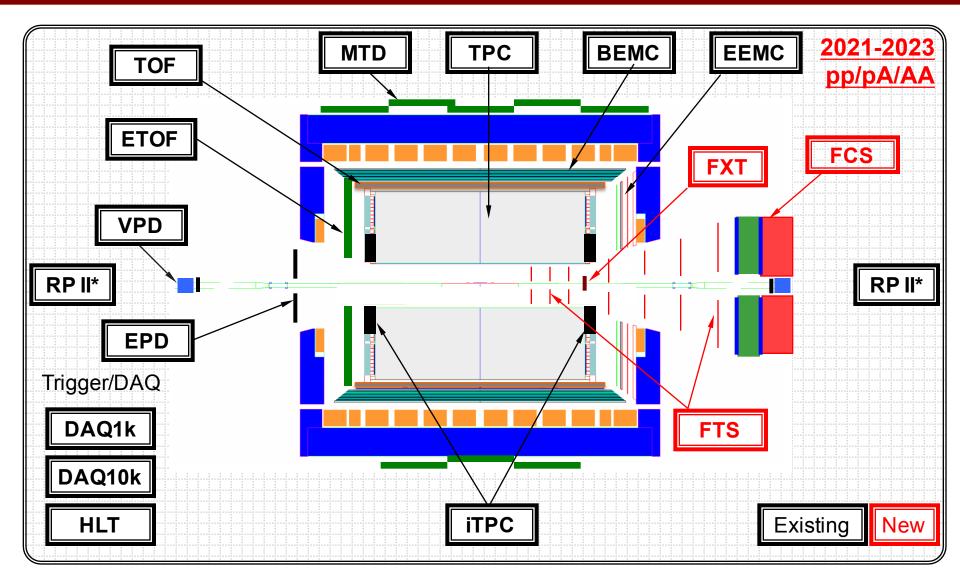
CERES Pb+Au, ~0-5%

ALICE Pb+Pb, 0-5% UrQMD Au+Au. 0-5%

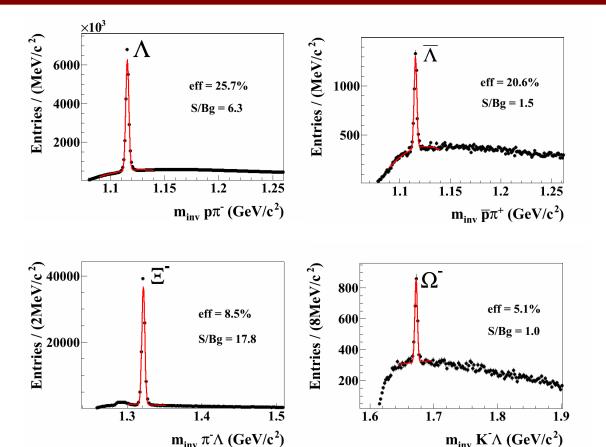

10²

S_{NN} (GeV)

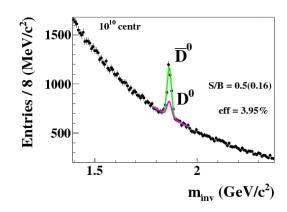
STAR Au+Au (FXT), 0-10%, TPC+TOF

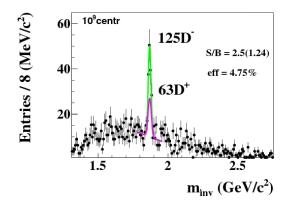

10³

Using Forward Upgrade for FXT


FCS: Forward Calorimeter System, FTS: Forward Tracking System, FXT: Fixed Target

Using Forward Upgrade for FXT

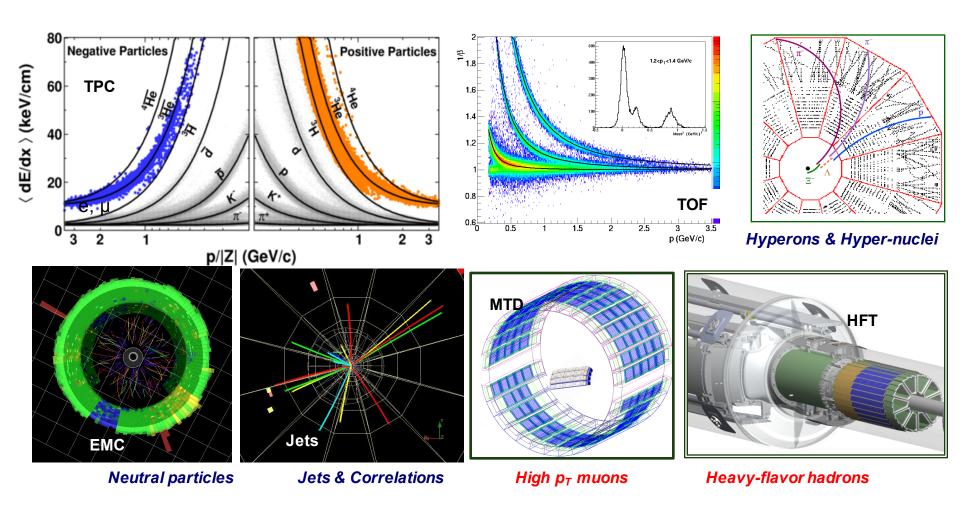



FCS: Forward Calorimeter System, **FTS:** Forward Tracking System, **FXT**: Fixed Target

Using Forward Upgrade for FXT

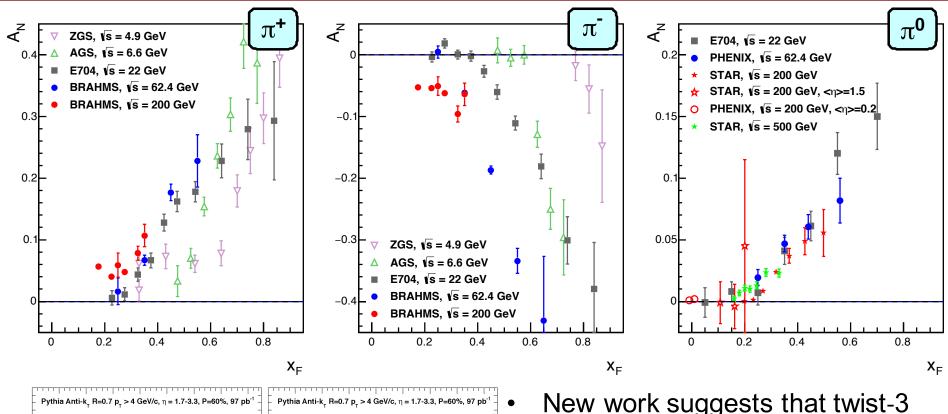
CBM-STS TDR Fig 2.20 Hyperon from 5x10⁶ Au+Au collisions at 10 AGeV

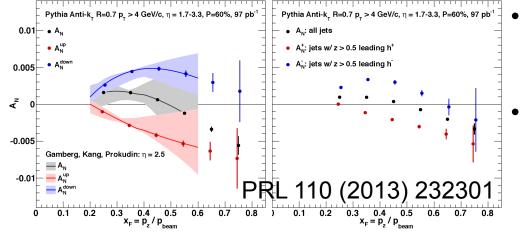
CBM-STS TDR Fig 2.21 D from 10¹⁰ and 10⁹ central Au+Au collisions at 25 AGeV.


What can the forward upgrade do for the FXT at STAR?

Summary and Outlook

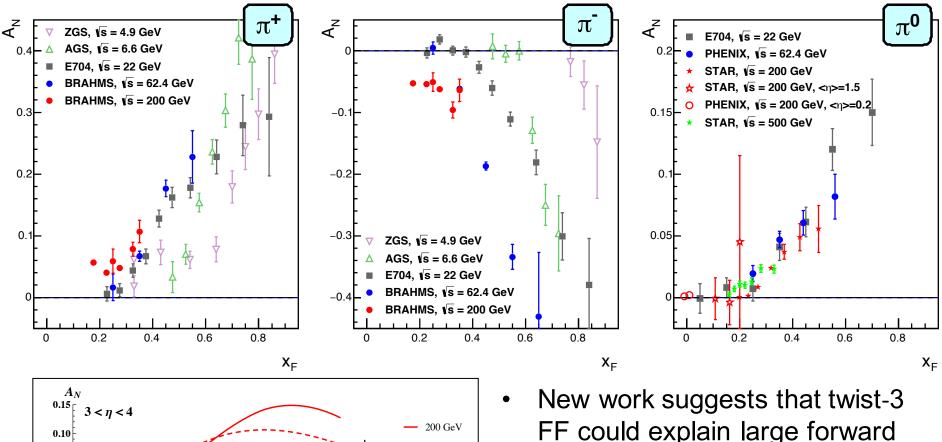
- Forward upgrade at STAR provide excellent opportunities to study spin, initial condition, and QGP in 2021-2023
 - p+p collisions: ΔG, transverse spin, A_N
 - p+A collisions: gluon saturation, nuclear PDF
 - A+A collisions: $\eta/s(T)$, longitudinal decorrelation, initial condition
 - Fixed target: to be explored hyperon, hypernuclei, charm meson ...
- Potential interest for some joint efforts?
 - Compelling and overlapping physics interests for CBM and STAR?
 - Construct extra CBM-STS stations for STAR forward?
 - Use CBM-STS stations for STAR forward?
 - ...


Backup


Particle Identifications at STAR

Multiple-fold correlations for identified particles at mid-rapidity!

pp/pA Forward Physics - A_N



New work suggests that twist-3 FF could explain large pion A_N and small jet A_N

Measurements of charged pions and flavor-enhaced jets in the forward region would help confirm this approach.

pp/pA Forward Physics - A

-- 500 GeV

- FF could explain large forward pion A_N
- Measurements of charged pions and flavor-enhanced jets in the forward region would help confirm this approach. Z.Ye, 3/18/2017

24

0.05

-0.05

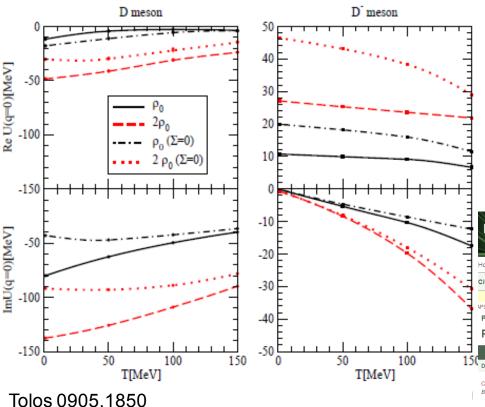
-0.10

-0.15[[]

0.1

0.2

0.4


0.5

PRD 89 (2014) 111501

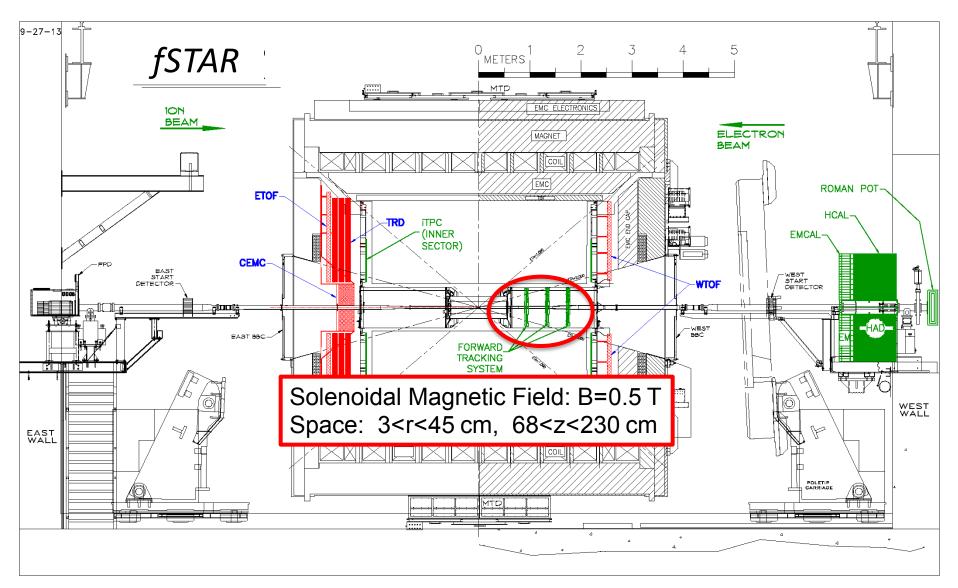
AA Forward Physics – HF Hypernuclei

Heavy-flavor states

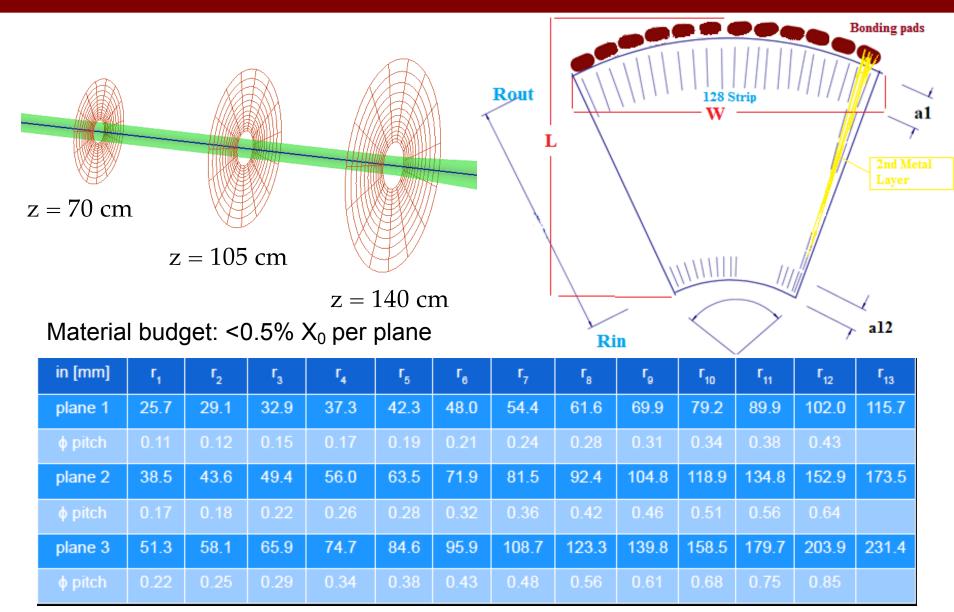
http://belle.kek.jp/belle/talks/moriondQCD10/p.pakhlov.ppt

Heavy-flavor hypernuclei

Predicted to exist (70's)
Cannot be produced in pp, ep
EIC enough energy for D/B hypernuclei
Forward p+A and peripheral A+A?
Vertex detector at Fragmentation region
Displace vertex: 3cm


How about baryon states?

D-+p**→**n+D⁰


D-+4He stable

Discovery potential!

Location & Space Constraints

Layout with uniform width in η

CBM STS

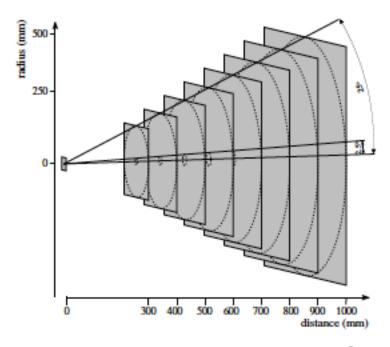
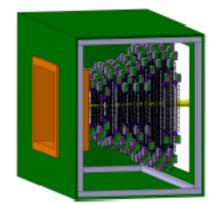



Figure 2.2: Concept of STS tracking stations covering the polar angles $2.5^{\circ} < \Theta < 25^{\circ}$.

1400x2000x 1100 mm3

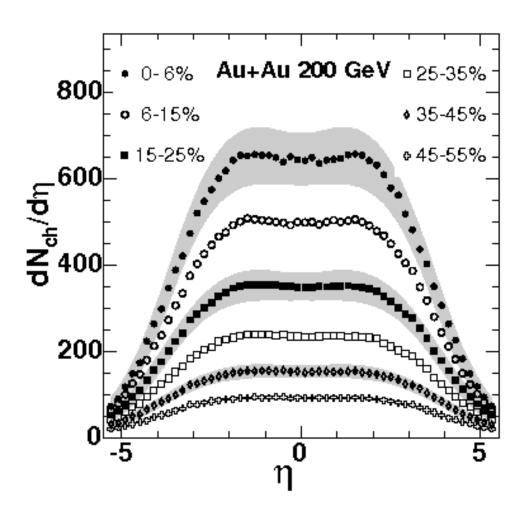

station	1	2	3	4	5	6	7	8
z position [em]	30	40	50	60	70	80	90	100
r _{inn} [em]	1.31	1.75	2.18	2.62	3.06	3.49	3.93	4.34
acceptance $\Theta_{tnn}^{hor,pert.}$	2.5°	2.5°	2.5°	2.5°	2.5°	2.5°	2.5°	2.5°
vertical r_{out} [cm]	13.99	18.65	23.32	27.98	32.64	37.31	41.97	46.63
acceptance $\Theta_{out}^{vert.}$	25°	25°	25°	25°	25°	25°	25°	25°
horizontal increase	65%	65%	50%	40%	20%	10%	0%	0%
horizontal r _{out} [em]	23.08	30.77	34.98	39.17	39.17	41.04	41.97	46.63
acceptance Θ_{out}^{hor} .	38°	37°	35°	33°	29°	27°	25°	25°

Table 2.2: Dimensions and acceptance radii of the tracking stations. Several stations are horizontally enlarged to enhance the reconstruction of low-momentum particles. See also Fig. 2.6.

station	ladders	modules	sensors	r/o chips	channels
1	8	76	76	1216	156k
2	12	100	100	1600	205k
3	12	108	132	1728	222k
4	14	116	144	1856	238k
5	14	112	168	1792	230k
6	14	112	168	1792	230k
7	16	136	216	2176	279k
8	16	136	216	2176	279k
Total	106	896	1220	14336	1835k

Table 2.6: Breakdown of STS components.

Occupancy

Assume total track=2*primary tracks:

Occupancy ≤ 5% (inner R) 10% (outer R)

in 0-3% Au+Au collisions at 200 GeV