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PAIR CREATION IN STRONG ELECTROMAGNETIC FIELDS

•Magnetars: B∼ 1015G =⇒
Problem: unclear conditions!

•Ultra-Peripheral Heavy Ion Coll.

b>R +R

Z

Z
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Problem: extremely short ∼ 10−29 s

ARTIST VIEW OF A MAGNETAR (NASA)

•ELI: Optical → X-Ray @ 1 EW:
I0 ∼ 1025 W/cm2 → ICHF ∼ 1036 W/cm2

+ Long lifetime:
τ ∼ 10−15 . . . 10−18 s ≫ 10−22 s

+ Condition for pair creation:
E2 − B2 6= 0, (crossed lasers)
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SCHWINGER EFFECT: PAIR CREATION IN STRONG FIELDS

Pair creation as barrier penetration
in a strong constant field
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•To “materialize” a virtual e+e− pair in a
constant electric field E the separation d must be
sufficiently large

eEd = 2mc2

•Probability for separation d as quantum
fluctuation

P ∝ exp

(

− d

λc

)

= exp

(

−2m2c3

e~E

)

= exp

(

−2Ecrit

E

)

•Emission sufficient for observation when E ∼
Ecrit

Ecrit ≡
m2c3

e~
≃ 1.3 × 1018V/m

•For time-dependent fields: Kinetic Equation
approach from Quantum Field Theory

J. Schwinger: “On Gauge Invariance and Vacuum Polarization”, Phys. Rev. 82 (1951) 664
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KINETIC FORMULATION OF PAIR PRODUCTION

Kinetic equation for the single particle distribution function f(P̄ , t) =< 0|a†
P̄
(t)aP̄ (t)|0 >
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Schmidt, Blaschke, et al: “Non-Markovian effects

in strong-field pair creation”

Phys. Rev. D 59 (1999) 094005

df±(P̄ , t)

dt
=

∂f±(P̄ , t)

∂t
+ eE(t)

∂f±(P̄ , t)

∂P‖(t)

=
1

2
W±(t)

∫ t

−∞
dt′W±(t′)[1 ± 2f±(P̄ , t′)] cos[x(t′, t)]

Kinematic momentum P̄ = (p1, p2, p3 − eA(t)),

W−(t) =
eE(t)ε⊥
ω2(t)

,

where ω(t) =
√

ε2
⊥ + P 2

‖ (t), with ε⊥ =
√

m2 + p̄2
⊥

and x(t′, t) = 2[Θ(t) − Θ(t′)].

Θ(t) =

∫ t

−∞
dt′ω(t′)

Constant field: Schwinger limit reproduced

f(τ → ∞) = exp
(−π

E0

)
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PAIR PRODUCTION IN SUBCRITICAL FIELDS (I)

Kinetic formulation for E(t) = −Ȧ(t) in
the Hamiltonian gauge Aµ = (0, 0, 0, A(t))

df(p, t)

dt
=

1

2
∆(p, t)

t
∫

t0

dt′ ∆(p, t′) [1 − 2f(p, t′)]

× cos



2

t
∫

t′

dt1 ε(p, t1)



,

where

∆(p, t) = eE(t)

√

m2 + p2
⊥

ε2(p, t)
,

ε(p, t) =
√

m2 + p2
⊥ + [p3 − eA(t)]2

The particle number density

n(t) = 2

∫

dp

(2π)3
f(p, t)
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Number of e+e− pairs in the volume λ3 for a
weak field (Jena Ti:AlO3 laser, solid line) and
for near-critical field Em/Ecrit = 0.24, λ = 0.15

nm (X-FEL, dashed line).
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e+e− PAIR PRODUCTION IN SUBCRITICAL LASER FIELDS (II)
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Time dependence of the density n(t) for
a monochromatic field

E(t) = Em sinωt, 0 ≤ t ≤ NT, T =
2π

ω
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Time dependence of the density n(t) for a
Gaussian wave packet

E(t) = Eme−(t/τL)2 sinωt.
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APPLICATION TO SUBCRITICAL LASER FIELDS
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APPLICATION TO SUBCRITICAL LASER FIELDS (II)
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weak field (Jena Ti:AlO3 laser, solid line) and
for near-critical field Em/Ecrit = 0.24, λ = 0.15

nm (X-FEL, dashed line).
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APPLICATION TO SUBCRITICAL LASER FIELDS (III)
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Wavelength dependence of the mean density
of e+e− pairs (solid line) and their annihila-
tion rate (dotted line). E = 3 × 10−5Ecr.
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PERSPECTIVES FOR e+e− PAIRS @ OPTICAL LASERS (I)

Observable: photon pair (e+ + e− → 2 γ)
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Project: G. Gregori et al. (2008)
at RAL Astra-Gemini Laser
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PERSPECTIVES FOR e+e− PAIRS @ OPTICAL LASERS (II)
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Measurement of refraction index by interference with probe beam.
Suggestion by R. Sauerbrey; Blaschke, Prozorkevich, Smolyansky, in preparation
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HOW TO ’SEE’ e+e− PAIRS @ OPTICAL LASERS (III)
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quasiparticle EPP

Measurement of refraction index

Interference condition: D = λp/2

Refraction index:
n = 1/

√

1 + η2[(2 + η2)/(1 + η2)]

Langmuir frequency ωL:
η = ωL/ωp = 104

√

ρe+e−[cm−3]

Probe frequency: ωp = 10 ω0

Condition fulfilled for:
ρe+e− = 1023 cm−3, i.e. I ≈ 1023 W/cm2

Angular dependence testable:
number of ’pancakes’ crossed varies
with incidence angle: from 3-4 to 20-30

Suggestion: R. Sauerbrey; Estimate: Blaschke, Prozorkevich, Smolyansky, in prep.
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π+π− PAIR PRODUCTION IN SUBCRITICAL LASER FIELDS (I)
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Time dependence of the pair density (left) and the number of annihilations (right) in the volume
λ3 for a periodic field (T - period) with Em = 1015 V/cm and λ = 800 nm for the different particle
species. Laser intensity 3 · 1027 W/cm2.
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π+π− PAIR PRODUCTION IN SUBCRITICAL LASER FIELDS (III)
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COMPARISON WITH IMAGINARY TIME METHOD

V.S. Popov, Phys. Lett. A 298 (2002) 83

• imaginary time method (time indep.)

• number of pairs only after full period T

• no distribution function

γ ≪ 1, γ = ~ω
mc2

Ecr

E

N(λ3T ) ∼
(m

ν

)4
(

E
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)5/2

exp

[

−πEcr

E

]

γ ≫ 1

N(λ3T ) ≈ 2π
(m

ν

)3/2
(

e

4γ

)2m/ν

Very large differences for E ≪ Ecr

Here: Grib, Mamaev, Mostepanenko (1988)

•Bogoliubov transformation (time dep.)

• pair number during field evolution

• distribution function

γ ≪ 1
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ACCUMULATION EFFECT IN NEAR-CRITICAL FIELDS

Particle number density n(T ; E0) = a0(E0) sin2(2πT ) + ρ(T, E0)T , T = t/λ
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Accumulation rate ρ(0, E0) (solid),
Schwinger rate a = 1, b = 1 (dashed),
a = 0.305, b = 1.06 (dot-dashed)

Results are nicely fitted with

ρ(T, E0) = ρ(E0) + ρ′(E0)T .

For E = 0.5 E0, a0 = 1.2 × 10−11 fm−3,
ρ = 5.4 × 10−12 fm−3/period, ρ′/ρ = 0.0033/period.

Comparison with Schwinger rate

ρ = a
m4λ

4π3

[

E0

Ecr

]2

e−bπEcr/E0

Attention:
E0 ∼ 0.35 Ecr backreactions become important!

Roberts, Schmidt, Vinnik: “Quantum effects with an X-Ray Free-Electron Laser”, Phys. Rev. Lett (2002) 153901
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MORE BRAINSTORMING WORKSHOPS NEEDED ...

D.B., Smolyansky, Nikishov in ITEP Moscow (2009)
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MORE BRAINSTORMING ELI WORKSHOPS NEEDED ...
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MORE BRAINSTORMING WORKSHOPS NEEDED ...
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QED with High Power Lasers!

Pair production experiment!

Dr Gianluca Gregori!

Oxford University and !

Rutherford Appleton Laboratory!
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List of collaborators (more to add…)!

!#This is the first attempt to observe measurable QED effects with high 
power lasers – need to include all interested organizations!

!#If you are not in the proposal, just let me know and you"ll be included!!
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QED with high power lasers!

!#The proposed work is part of a large experimental campaign aimed at the 
exploitation of high power lasers to explore non-perturbative and non-
equilibrium QFT regimes!

!#Pair production: 1st experiment scheduled for winter 2010. Simplest 
beam arrangement and feasible on the current Gemini system.!

!#Nonlinear mixing: vacuum polarization via four-wave mixing using a 
nonlinear stimulated process. It is possible to show that by interacting 

three beams into a high vacuum region, a fourth beam of photons 
with unique wavelength will be generated.!

!#Unruh radiation: interaction of a high intensity laser with relativistic 
electrons (> 1 GeV) can access regimes where the electrons, in their 
rest frame, experience a ultra-high intensity field such as the one 

found at the event horizon of a black hole. !
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QED with high power lasers!

!#High risk experiments (!) but high payoff from their success!

!#Pair production experiment: de-risking strategy!

o# Measure vacuum pair production with a variety of schemes (vacuum 
polarization / $-$ co-incidence detection)!

o# Pair production is high-Z foils (already demonstrated)!
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Pair production in high-Z foils!

a) !    electron-beam   !   positrons 

b)#    $-ray   !   positrons 

LASER 

MeV e-beams, 

-rays 

Variable 

thickness target 

High-Z 

material 0          2            4            6            8 

Au Thickness, m 

Positron 

Yield 
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!#Proposed two-foil experiment!

Pair production in high-Z foils!

!#Detailed modelling of the experiment is required:!

o# Numerical calculations of pair number vs foil thickness!

o# Optimization w.r.t. pulse length and laser intensity!

o# Polarization dependence?!
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Pair production in vacuum!

!#Need to estimate the quality of vacuum (!) – Can we produce ultrahigh 
vacuum?!

o# Detailed calculations are required in order to determine residual effect 

of residual atoms!

o# Can we use the laser pre-pulse (nanosecond pedestal) to expel the 
ions from the laser focal spot?!

Simple estimate: assuming 100 residual atoms in the focal spot (p~1 mTorr), 
we expect 0.01 pairs per laser shot (Heitler, 1954)!
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Pair production in vacuum – simple theory!

!#The basic of this process is multi-body interaction of a large number of 
optical photons – non-perturbative process!

!#Described within the non-equilibrium quantum field theory framework: 

quantum Vlasov equation!

!#Which is the physical meaning of the time-dependent particle number?!
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Pair production in vacuum – simple theory!

!#The particle number does not commute with the Hamiltonian – it is not a 
well defined quantity!!

!#Hence, the particle number is well defined at asymptotic times (t very 
large) or for classical particles (large mass)!

!#In our case, we need to account for the change of particle number during 

the time the laser is on…!
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Pair production in vacuum – simple theory!

!#Similarly, particles are produced in pairs (i.e., they are initially entangled) 
– this is elucidated by the cosine term in the quantum Vlasov equation!

!#In the case of spatially homogeneous weak fields the disentanglement 

time is !

!#Hence, the particle number is well defined during the laser period !!

!#However, are this particles on the mass shell? Experiment is the only way 
to test the validity of NeqQFT approach!

For the proposed !
Gemini experiment!
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Proposed experiment (!! co-incidence)!

!#Solution of the quantum Vlasov equation for 
idealized (spatially homogeneous and 
sinusoidal field) gives Nep~6x108 at the peak 
of the laser pulse and then ~0 after the pulse!

!#Those pairs can annihilate due to collisions in 
the laser spot volume, giving N!!~7-20 per 
laser shot !

!#More precise calculations are needed for the 
actual laser configuration (beam profile, 
spatial and temporal overlap…)!

!#Background level of $$ event is ~0.4 per laser shot (measured in-situ)!

!#Predicted signal is significantly above background level!
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Proposed experiment (vacuum polarization)!

!#The presence of electron-positron pairs 
changes the index of refraction!

!#The corresponding reflectivity of the vacuum 
is!

!#Expect ~5 backscattered photons per laser shot!

!#Difficult to distinguish from the noise background but worth to try!!
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CHALLENGES OF FUTURE LASERS FOR THE SCHWINGER EFFECT

•First experimental tests to theories of pair production, e.g. kinetic approach

•Simplest laser field model predicts production of dense electron-positron plasma
in the focus of counter-propagating laser fields

•Observable manifestations testable, e.g., at ASTRA-Gemini:

–several gamma-pairs per laser pulse

– refraction index measurable by intereference with test beam

–higher harmonics generation, in particular 3rd

•Towards/Beyond Schwinger limit, e.g., at ELI:

–Quantum statistics: Pauli-Blocking/ Bose Condensation; Backreactions

–Pion production limit: signalled by muons

–Pion condensation (?) and quark-gluon-plasma formation

• Laser acceleration of ion beams (see arxiv:0811.3570 [physics.plasm-ph])

Thanks to: D. Habs (Munich), G. Mourou (Paris), R. Sauerbrey (Rossendorf)

EMMI MOSCOW, MAY 15, 2009



SCHWINGER EFFECT: PAIR CREATION IN STRONG FIELDS
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MODERN QCD PHASE DIAGRAM: QUARKYONIC MATTER
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DEDICATED HEAVY-ION EXPERIMENTS FOR DENSE QCD

CBM experiment @ FAIR Darmstadt NICA-MPD experiment @ JINR Dubna

Phase Diagram: D.B., Sandin, Typel (2009)
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