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iIgh-resolution x-ray spectroscopy and
phy for investigations of plasma created by
PHELIX laser.

X-ray diagnostics of temperature, density, ionization state of high-
temperature plasma created under interaction of high intense PHELIX laser
pulse with structured and homogeneous targets.

» Observations of the fast ions generated in the PHELIX laser-produced
plasma by X-Ray spectroscopy methods.

» X-ray spectroscopy and radiography of warm dense matter.

» Diagnostics of MG-magnetic fields generated in the laser-prod
plasma by observations of X-Ray plasma satellites and Zeeman
X-Ray spectral lines.
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High resolution X-ray spectroscopy for WDM
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The way to produce and investigate WDM

Hot

electrons
Warm plasma 45'
Tewarm ~1-30eV =

K,lines
of ions with small charges

o

to spectrometer

Directly measured value- plasma ionization state,
T ,va™m can be determined



X-ray spectrometers and experimental setup

Off-axis parabola X-ray film Spherically
bent crystal

Magn et slit

Titanium
target

Hot plasma (T, ~ 1 keV) on the front side of foil target

FSSR spectrometers provide high spectral and spatial resolution, simultaneously



Experiments on COMET LLNL facility
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10-40 pm spot size 2-50 pm T

1-67J
1017-10"° W/em?

(some targets coated with
1000A Al or 1 pm parylene)

/[ T. Ditmire group, UT Austin and LLNL

The FSSR-2D (focusing
spectrometer with spatial
resolution) has spatial
resolution of 48 pm 1n one
dimension and spectral

resolution A/8A ~ 3800
the other.

bL Electron and photon
counting detectors
(A/dh = 42) also
view the back side
of the targets.
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With further increases of
temperature. T1 burns through the
M-shell 1ons, producing Ka
emission shifted by about 4 eV for
each charge state. This shaft 1s
very near the energy difference
between the Ka, (2p;,- 1s,,,) and
Kd, (2py - 1s,,) lines.

Between 30 and 100 eV, the mean

energy of the Ko emission feature
shifts by 30 — 50 eV,




Inner-shell Ko of solid Ti, T, = 200 — 1000 eV
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As Ti burns through the L-shell

ions. the inner-shell Ko emission
1s shifted by about 30 eV for each

charge state: each such shift 1s
comparable to the total shift in

mean energy from neutral Ti to
Tilot.

Above about 1 keV, K-shell
ionization stages are reached:

He-like (Ti2°); 4750 eV

H-like (T1*'*): 4970 eV

*No line thifs



Effect of laser intensity

energy intensity  Ko,Ax film
shot () focus (W/em?)  (um) 1mages

22-11 442 1 3x10% 190 _
-

22-16 419 110 3x107 170 *
22-17 430 110 3x107 220 ﬁ

2218 419  1/100 3x106 190 =
| -

22-19 478 1/100  3x1016 240 — -

T, and <Z> increase with laser intensity - t

/[ T. Ditmire group, UT Austin and LLNL

I

£

B

E

-

£

2

!.

=
Ka, =]3eV

£ =2

=

=

£

s

£

4480 4500 4520 4540 4360

energy (8V)

T.=20 eV

T.=18 eV

T.=15eV



Effect of Ti foil thickness (Ti +0.1 um Al)
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Spatial resolution along target plane
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Wavelengths, angstroms



Spatial resolution and “fountain effect”
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Line widths change with energy and target

fwhm (Ax) of Ko, and satellites:

Satellite emission (4515-4520 V)
1s narrower than Ko emission i thin
targets: evidence for a
“fountain effect?”

fast
electrons

Or simply an mdication of
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e

front-side plasma gradients?
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Fhysics &. _ad VYA
Advanced Technologies




WDM investigations — suggestions

We suggest in the frame of the EMMI project:

Using ultrahigh laser fluxes ~ 101°-10%° W/cm? to
Increase spectral brightness and find which of excited
levels can exist in strongly coupled plasma
by mean of registration K _, KB’ Ky,... spectral lines

To provide higher energy of hot electrons on front
target surface, so the investigations of WDM for

large Z materials will be available.



. X-ray and ion radiography of WDM




Laser generated plasma as a source of probe radiation

Intense laser pulse is unique and useful tool to generate a flux of
X-ray photons as well as energetic charge particles, simultaneously

© Both fluxes can be used for shadowgraphy imaging and
absorption measurements of different objects and processes
including low contrast structures in plasma

© Following diagnostic opportunities can be realized

© lon and proton radiography
© X-ray absorption imaging and spectroscopy
© X-ray phase contrast imaging

Source size is important to provide
spatial and spectral resolution, spatial coherency

Energy of probing particles and monochromatization are important to provide
the sensitivity on density and chemical staff of an object

Source brightness and scheme luminosity are important to provide
wider dynamic range, precise measurements and image quality



X-ray monochromatic backlighting scheme

- I‘Lﬁ tangential

J_d_,_.,_,ﬂ-’ 2 ,ﬂ
- - ’:?\\
._._F.'

Features:

- Backlighter and object are
inside Rowland circle
= High luminosity
= Higher spatial resolution

focus
- Angle of radiation incidence is
far from normal one
= Wide spectral range
= Spatial resolution tunable
,1’
AN Rsinf 2 1
- L . K _ __)5_1],
e i a— Rsind c—a |\ Hsmé ¢
¥ a=80mm—, al e 28inf 1
5 - M.= ——\b-1].
e | Js 2asinf— R~ ° c—a K R c) ]
¢ = 100mm ~—__ : :
g/ Sagittal and tangential focuses are not on the same

position. By choosing detector position the spatial
resolution along each direction can be tuned up.

©)

Monochromatic scheme allows to measure object density or
chemical staff in precise according to probe radiation absorption



Experimental setup

Vanadium foil

Shock drive laser

SOP

beams

VISAR ——/

/[ M. Koenig group, LULI Ecole Polytechnique

Main laser:

1ns, 20,
300J, d =400 um
| = 5*1013 W/cm?

Backlighting laser:

1ns, 20,
250 J,d =150 um,
1 =1071°W/cm?

Spherical crystal:

Quartz, 2d =4.912 A
Il reflection order
Curvature 150 mm
Magnification 10




Target design

Holder

\ Pusher
v

Shock rlave. ns laser

generation in -

CH sliver

Composite pusher
CH10 um + Al10 um + CH 10 um

CH sliver



Calibration results
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Shock wave density measurements

X-ray backlighting image in V Hea spectral line

Transmission Compression

3 I L] I 1 1

‘Unshocked CH

L i i
KD A i wn

uT m}hacﬁ propagation (pm) -300 0 300
Holder Shocked CH

Due to spectral selectivity of backlighting image
the density profile of the object can be measured in precise.
with spatial resolution along shock front.

The maximum compression of 2.85 is obtained for shock wave in CH sliver



Shock wave evolution and velocity

In order to resolve the evolution of imaging object the delay between
main and backlighter laser pulses can be aligned

SRR A . ---":'f . £~
f "'- oy ko -‘C\. e i F P Y PN L L oy S [ L il||I'.."'-

Shock position ~ 100 ym CH Shock posnmn ~ 1?5 gm
att=5ns sliver att=9ns
t=5ns t=9ns

Shock front velocity is measured to be equal 19 km/s
During the propagation the cylindrical symmetry of shock front is stable



Diagnostic

Top view | RCF: prolon radiograghy = jat and

anifriesd medium inberaction
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i
i
|
Saif Optical Pyometny: imaging of :
|
|

Amibdent medium: Ar gas jat
Aluminivm fail

Backlight baam ;
FICC2000

Temporary solution:

Change to proton radiography diagnostics
in quite the same experimental setup.
RCF film instead of X-ray crystal

Obstacle

Brightness of x-ray source
preferably depends on laser
energy not by pulse intensity

On upgraded LULI facility

50 J in 1 ps is available now
instead of 500 J in 1 ns before.
X-ray source has brightness
not enough for monochromatic
shadowgraphy imaging.

Solution:

Special design
for backlighting target.
Increase of detector sensitivity



Proton radiography imaging results

Secondary
No ambient gas Ar 20 bar structure

Jet Jet

.

Delay 10 ns Sns Amb. flow 30 ns

Nozzle

Probe proton energy ~ 5 MeV

Proton radiography is perfect to image the evolution of plasma structures
© but not for quantitative measurements on their densities.
Further development of soft X-ray diagnostics is on demand.



WDM investigations — suggestions 2, 3

We suggest in the frame of the EMMI project:
To study shock compression in WDM
for higher Z materials, metals, by means of x-ray
monochromatic shadowgraphy and ion radiography.

To develop hard X-ray backlighting imaging using fs
PHELIX beam to produce bright source of probe

radiation.



Conclusion

Available devices
and methods

High resolution spectrometers
Spherically bent crystals
Modeling of spectra
Backlighting schemes
Absorption and phase contrast

Forthcoming tasks

Create and study of

Super dense plasma

Hot dense plasma

Warm dense plasma
Effective sources for
ion- and proton-radiography
Images of nanoscale foils and
biological samples
Measurement of MG magnetic fields
Monocromatic imaging of
shock waves and plasma jets
Modeling of astrophysical
phenomena in laboratory
Investigation of new spectroscopy
phenomena

FHEI.:%X

Patawatt High-Energy Laser for Heavy lon Expeanments
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