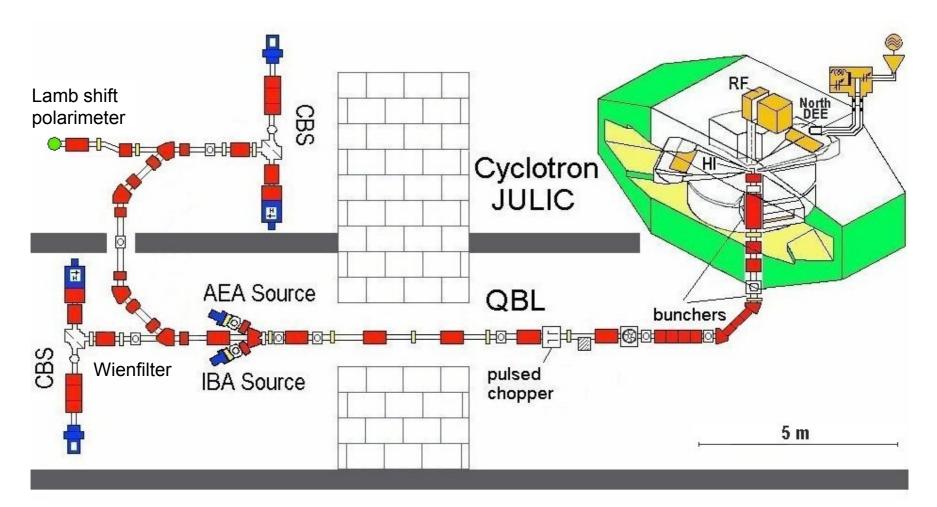

COSY injection and tuning

Workshop on Beam Dynamics and Control studies at COSY November 18, 2016 | C. Weidemann

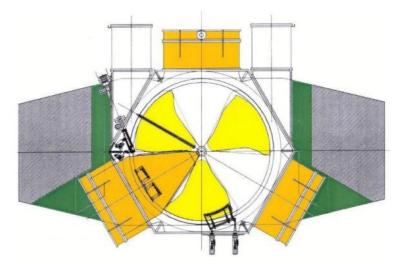
COSY facility



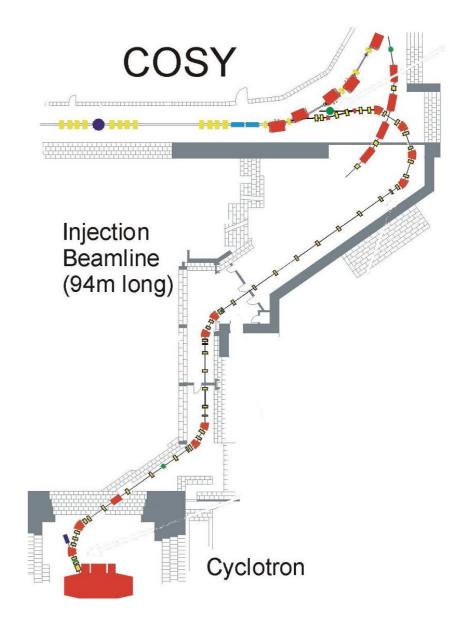
COSY facility

COSY - source and cyclotron

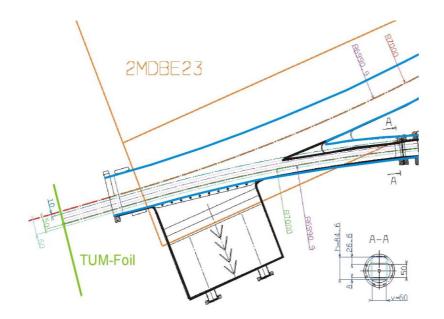
- 4.5 keV/u from source
- 45 MeV (proton), 76 MeV (deuteron) from cyclotron

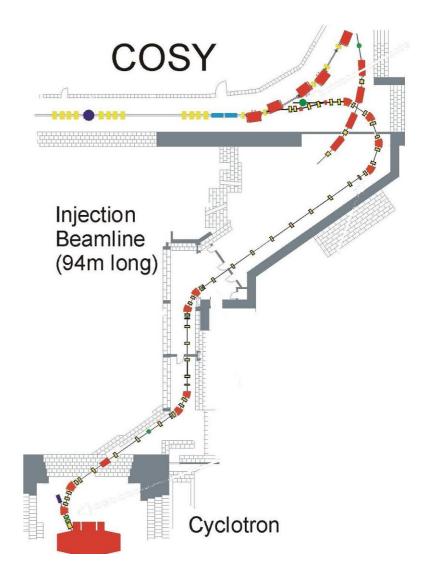


COSY - cyclotron JULIC

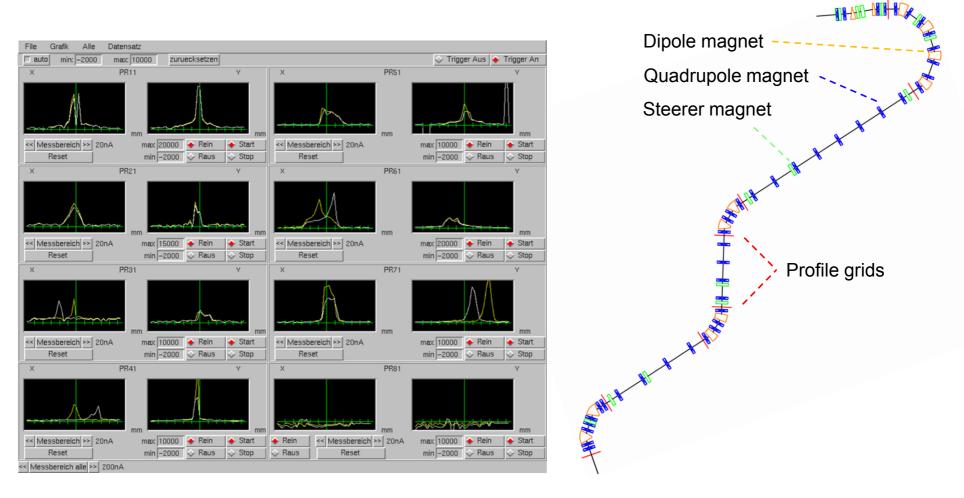


45 MeV H⁻ and 76 MeV D⁻ for COSY with 20 ms stripping injection/cycle

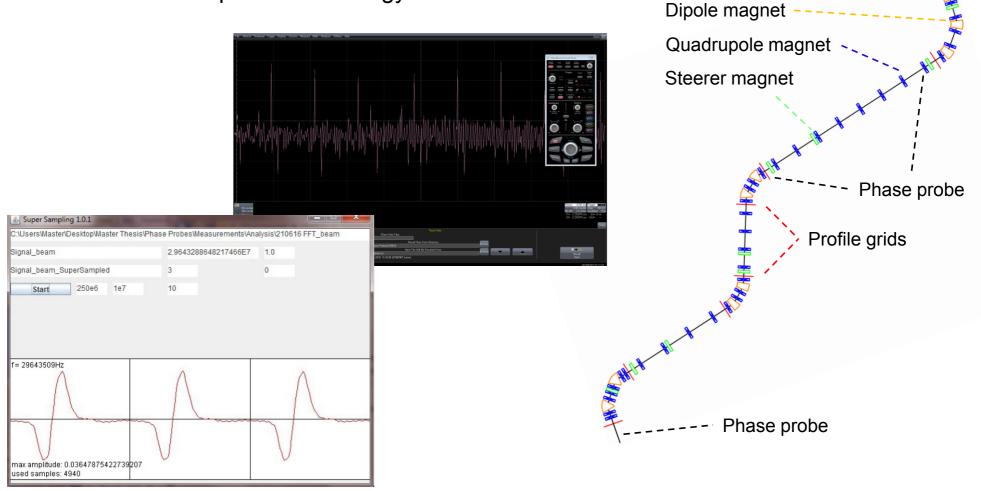

AEG design Request for quote: 1961 First internal beam: 1968 Upgrade for COSY: 1990 Pole diameter 3.3 m / 700 t iron $\langle B \rangle_{max} = 1.35 T B_{hill} = 1.97 T$ 20 - 30 MHz (h=3) 22.5-45 MeV/A2-4.5 keV/A injection 3 ion sources (2 multicusp +pol. CBS)


- Transfer line from cyclotron to COSY
- 45 MeV protons or 76 MeV deuterons
- 5 bent and 6 straight sections (I = 94 m)
- 30 mm vertical offset
- Typical beam current: 10 μA
 (~10¹¹particles in COSY)
- ~95% transmission from cyclotron exit to COSY entrance

COSY - injection

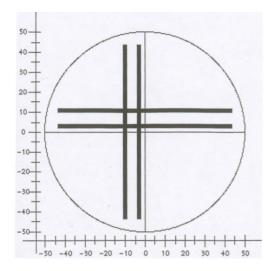


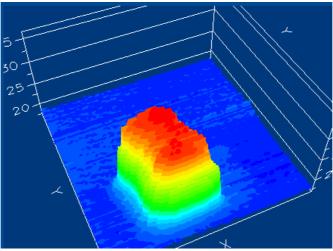
- Stripping injection of H^-
- 3 fast ramping bumper magnets in COSY move orbit on the stripping foil
- Injection onto "distorted orbit"
- Reduction of injection bump within 20 ms

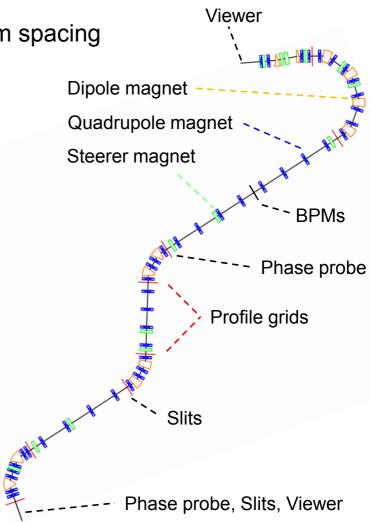

Diagnostics

- 8 Profile grids (harps): 39 wires (x, y), 1 mm spacing

Diagnostics


- 8 Profile grids (harps): 39 wires (x, y), 1 mm spacing
- 3 Phase probes for energy determination

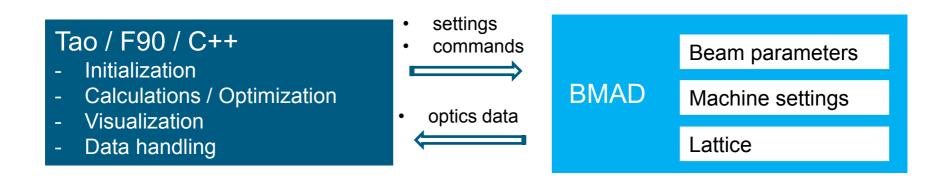



18. November 2016

Diagnostics

- 8 Profile grids (harps): 39 wires (x, y), 1 mm spacing
- 3 Phase probes for energy determination
- 2 BPMs, 5 Viewers
- Ionisation chambers, Bragg peak chamber
- Radiographic films
- 2 Systems of horizontal and vertical slits
- Polarimeter

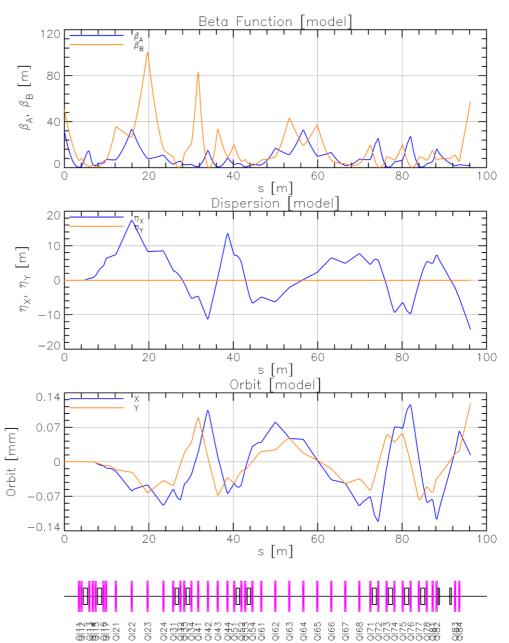
IBL modeling


BMAD <u>http://www.lepp.cornell.edu/~dcs/bmad/</u>

- Bmad is an object oriented, open source, subroutine library for relativistic charged-particle dynamics simulations in accelerators and storage rings
- Includes various tracking algorithms like Runge-Kutta and symplectic integration.
- Bmad has routines for calculating transfer matrices, emittances, Twiss parameters, dispersion, coupling, etc.

<u>TAO</u>

- Tao is a general purpose simulation program, based upon Bmad
- Can be used to view lattices, do Twiss and orbit calculations, nonlinear optimization on lattices, etc., etc.

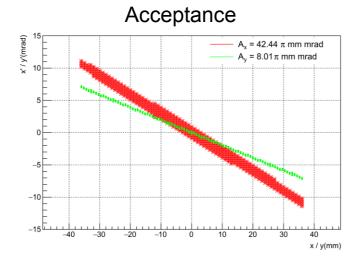


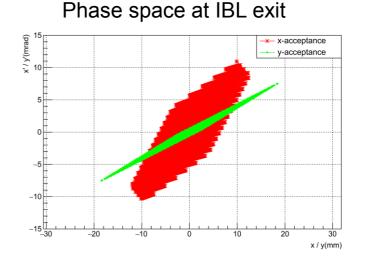
IBL modeling

<u>Data</u>

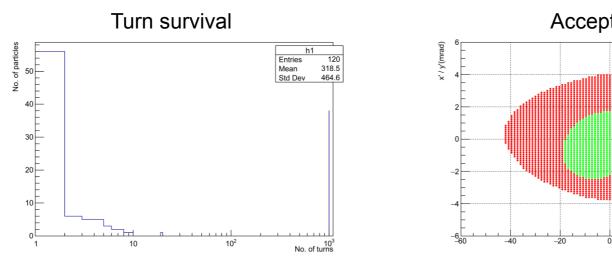
- Betatron amplitude
- Phase advance
- Dispersion
- Orbit
- Coupling

Data_Type	Description	Source	
alpha.a, alpha.b	Normal-Mode alpha function lat		
apparent_emit.x, apparent_emit.y	Apparent emittance	beam, lat	
beta.a, beta.b, beta.c	Normal-mode beta function	beam, lat	
beta.x, beta.y beta.z	Projected beta function	beam, lat	
bpm_orbit.x, bpm_orbit.y	Measured orbit	lat	
bpm_phase.a, bpm_phase.b	Measured betatron phase	lat	
bpm_eta.x, bpm_eta.y	Measured dispersion	lat	
bpm_k.22a, bpm_k.12a, bpm_k.11b, bpm_k.12b	Measured coupling	lat	
bpm_cbar.22a, bpm_cbar.12a, bpm_cbar.11b, bpm_cbar.12b	Measured coupling	lat	
c_mat.11, c_mat.12, c_mat.21, c_mat.22	Coupling	lat	
cbar.11, cbar.12, cbar.21, cbar.22	Coupling	lat	
chrom.dtune.a, chrom.dtune.b	Chromaticities for a ring	lat	
chrom.dbeta.a, chrom.dbeta.b	Normalized Chromatic beta beats		
	$(1/\beta_{a,b})\partial\beta_{a,b}/\partial\delta$	lat	
chrom.dphi.a, chrom.dphi.b	Chromatic phase deviations $\partial \phi_{a,b}/\partial \delta$	lat	
chrom.deta.x, chrom.deta.y	Second order dispersions $\partial\eta_{x,y}/\partial\delta$	lat	
chrom.detap.x, chrom.detap.y	Second order dispersion slopes $\partial \eta_{x,y}^\prime/\partial \delta$	$\partial \eta'_{x,y} / \partial \delta$ lat	
damp.j_a, damp.j_b, damp.j_z	Damping partition number	lat	
dpx_dx, dpx_dy, etc.	Bunch <x px=""> / <x^2> & Etc</x>	beam	
e_tot	Beam total energy (eV)	lat	
element_attrib. <attrib_name></attrib_name>	lattice element attribute	lat	
emit.a, emit.b, emit.c	Emittance	beam, lat	
eta.x, eta.y, eta.z	Lab Frame dispersion	beam, lat	
eta.a, eta.b	Normal-mode dispersion	beam, lat	
etap.x, etap.y	Lab Frame dispersion derivative	beam, lat	
etap.a, etap.b	Normal-mode dispersion derivative	dispersion derivative beam, lat	
expression: <arithmetic expression=""></arithmetic>	See the text	lat	
floor.x, floor.y, floor.z, floor.theta, floor.phi, floor.psi	Global ("floor") position	lat	
gamma.a, gamma.b	Normal-mode gamma function	lat	




18. November 2016

Tracking


<u>IBL</u>

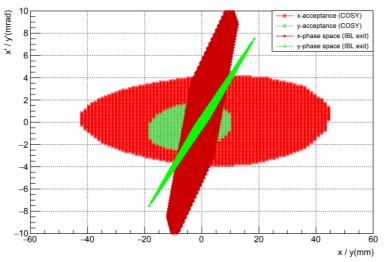
Tracking of particles for a wide range of starting parameters (x, y, px, py)

<u>COSY</u> Multi-turn tracking (for 1000 turn \rightarrow 50 turns)

Acceptance

 $A_x = 183.58 \pi$ mm mrad

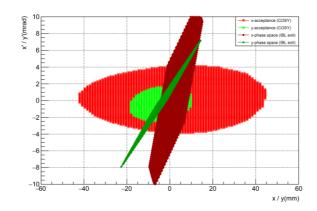
 $A_v = 29.64 \pi \text{ mm mrad}$

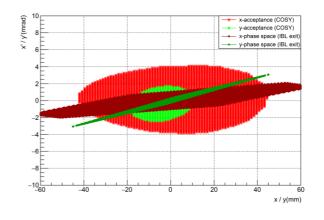

40

60

x / y(mm)

20


Tracking

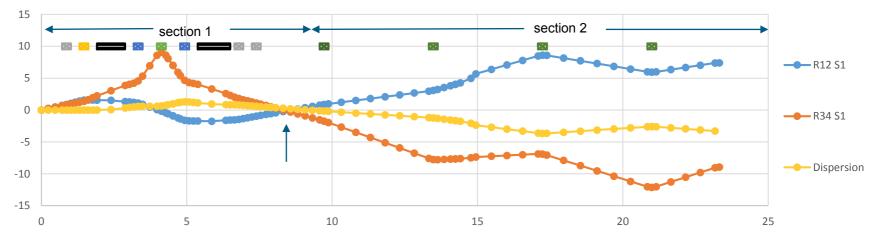


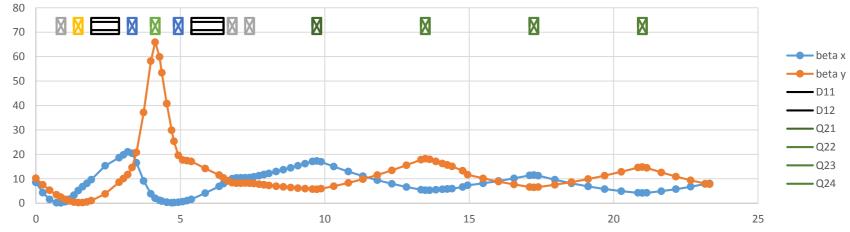
Phase space at IBL exit and COSY acceptance

Improve injection efficiency

- Optimize overlap of IBL phase space and COSY acceptance
- Identify "knobs" for e.g. transverse shifts of the beam at inj. foil
- COSY settings (injection bump, e-cooler beam) to match IBL

Tracking

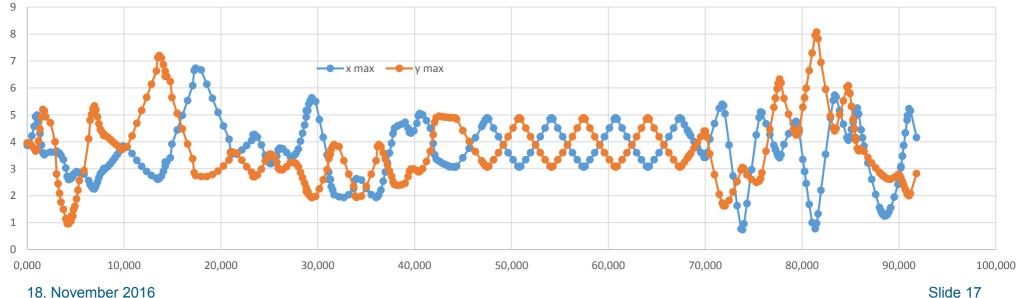

Combined tracking using BMAD


IBL modeling

Transport Excel (Sig Martin)

- Match section 1 to be achromatic (D = 0) at exit


- Fit settings of section 2 for FODO structure (large β -function)
- Perfect matching not possible due to different distances between quads


IBL modeling

Transport Excel (Sig Martin)

- Fit settings of section 6 for FODO:
 - β-functions in Q61 and Q63 •
 - $\alpha_x = \alpha_y = 0$ in all quads
- New quadrupole settings can be used for particle tracking

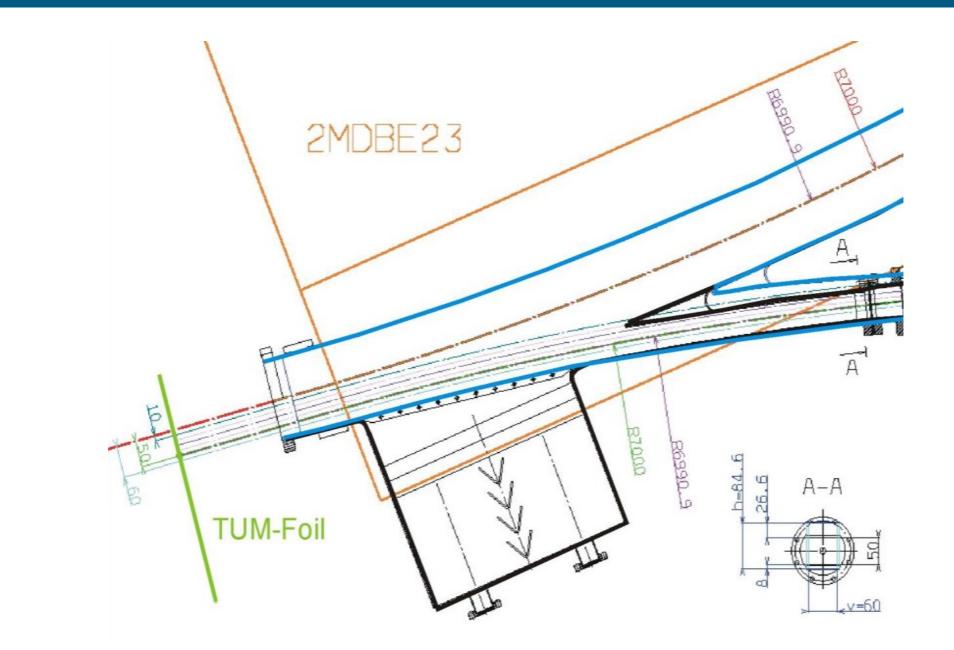
Beam sizes along IBL

Slide 17

Summary and Outlook

Status:

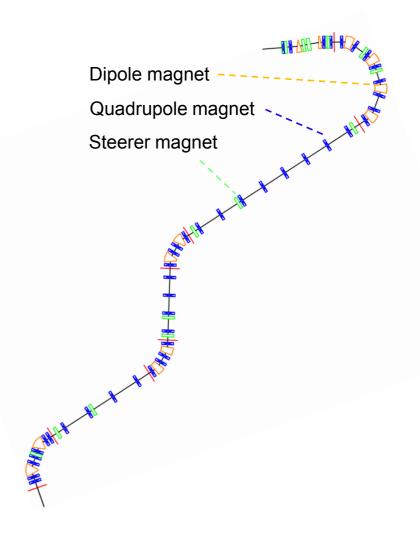
- Injection beam line model + COSY model are set up in BMAD
- Combined tracking is working
- Many diagnostic tools available and working
- Profile measurements taken


<u>Plan:</u>

- Analysis of profile grid data (k-modulation, spot scanning)
- Improve model for better agreement with measurements
- Insert documentation data (positions, calibration factors)
- Implement final dipole magnet correctly (Analyze existing floating wire measurements)
- Determine tools for better matching of injection into COSY
- Adjust COSY settings (injection bump, orbit, e-cooler beam) to match IBL

Thanks to R. Gebel, S. Martin, J. Stein for information and support

Spare slides


Spare slides

Transmission through IBL

Transmission				
File Konfiguration Eintraege	uebernehmen	Mikropulsung Werte ue	bernehmen (Timing-Sender, Zielimpuls)	
Datum: Tue Oct 21 17:42:05 MEST 2003 Arbeitsdirectory: /mnt/cc-l/operator Alte Transmissionsdaten: Die Okt 21 14:55:06 CEST 2003 /mnt/cc-l/operator				
Quellen-Strahlfuehrung	♦ HQuelle 1 (IBA)	🔶 HQuelle 2 (AEA)	♦ HPol-Quelle	
FB3 216 [uA] FB5 74 [uA]			FB5 / FB3 = 34.3 %	
Zyklotron				
Phasensonde300 23.2 [uA]			PS300 / FB5 = 31.4 %	
Phasensonde1310 14.7 [uA]			PS1310 / PS300 = 63.4 %	
BC11 9 [uA]			BC11 / PS1310 = 61.2 %	
			BC11 / FB5 = 12.2 %	
Injektions-Strahlfuehrung	L	adungsaustausch = 0.8		
P 293.7 [MeV/c]	Makro: Dauer 20 [ms]			
BC81 8.5 [uA]	Mikro : Dauer [ms]			
	Wiederholzeit [ms]	N = 1.1e+12 p	BC81 / BC11 = 94.4 %	
Synchrotron Experiment 3 Mode (intern)				
Zielimpuls 2678 MeV/c	Linder feftrer 0.4000 hills	N. O. Ora i 1 m		
BCT (Injektion) 2380 mV BCT (Einfang) 1340 mV	Umlaufsfreq. 0.4882 MHz	N = 3.0e+11 p Inj		
BCT (Einfang) 1340 mV BCT (Flat Top) 3620 mV	Umlaufsfreg. 1.542 MHz	N = 1.7e+11 p N = 1.5e+11 p Be	BCT-E / BCT-I = 56.7 % eschl.: BCT-TOP / BCT-E = 88.2 %	
		н посттр – Ве		

- Transfer line from cyclotron to COSY
- 45 MeV protons or 76 MeV deuterons
- 5 bent and 6 straight sections (I = 94 m)
- 30 mm vertical offset
- Typical beam current: 10 μA
 (~10¹¹particles in COSY)
- ~95% transmission from cyclotron exit to COSY entrance

MAD-8 (Methodical Accelerator Design)

- Currently used tool for "online" modeling
- Loading of present machine parameters for direct optics improvement
- MAD is a general-purpose tool for charged-particle optics design and studies in alternating-gradient accelerators and beam lines.
- The MAD scripting language is de facto the standard to describe particle accelerators, simulate beam dynamics and optimize beam optics

MAD-X (http://madx.web.cern.ch/madx/)

- Actual version of MAD: presently used for "offline" modeling
- Version controlled model
- Model can be generated using COSY Database

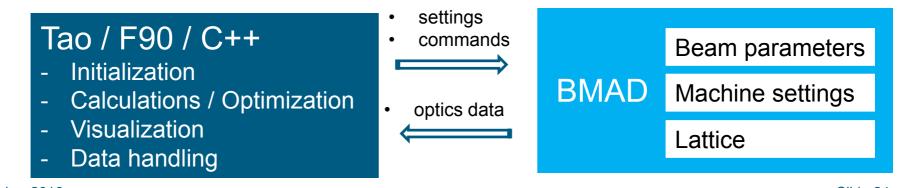
<u>Other</u>

- Transport, Turtle
- 3D-field solver with particle trace (CST, COMSOL, GPT,..)

Software

Bmad

 Bmad is an object oriented, open source, subroutine library for relativistic charged-particle dynamics simulations in accelerators and storage rings


http://www.lepp.cornell.edu/~dcs/bmad/

- Includes various tracking algorithms like Runge-Kutta and symplectic integration.
- Bmad has routines for calculating transfer matrices, emittances, Twiss parameters, dispersion, coupling, etc.

<u>TAO</u>

BMAD

- Tao is a general purpose simulation program, based upon Bmad
- Can be used to view lattices, do Twiss and orbit calculations, nonlinear optimization on lattices, etc., etc.

