

COSY optics

Workshop on Beam Dynamics and Control studies at COSY November 18, 2016 | Christian Weidemann

COSY facility

COSY - Parameters

COSY		
Circumference	183.47 m	
Particles	(Un)polarized p and d	
Type of injection	H^- , D^- stripping injection	
Current at source exit	Polarized: 15 μ A	
	Unpolarized: $100-200 \mu A$	
Momentum range	$0.3-3.65 \; \text{GeV/c}$	
Betatron tune range	3.55–3.7 in both planes	
Phase-space cooling	Electron and stochastic	
Beam position monitors	31 (horizontal and vertical)	
Steerers	23 (horizontal), 21 (vertical)	
Straight sections	Length: 40 m	
	4×4 quadrupole magnets	
	4 sextupole magnets	
	Beam pipe diameter: 0.15 m	
Arc sections	Length: 52 m	
	3×4 dipole magnets	
	3×4 quadrupole magnets	
	5 sextupole magnets	
	Beam pipe in dipole magnets:	
	height: 0.06 m, width: 0.15 m	

- 1.5 · 10¹¹ protons per injection (unpolarized beam)
- Internal targets: ANKE, WASA,
 EDDA, and the PAX interaction point
- Beam extraction to 3 target locations
- Beam cooling is realized by:
 - 100 keV electron cooling up to proton momenta of 0.6 GeV/c
 - 2 MeV electron cooling up to max.
 COSY momentum
 - stochastic cooling for proton momenta above 1.5 GeV/c
- Stacking injection for intensity increase

Arcs:

- 3 mirror-symmetric unit cells with a DOFO-OFOD structure in the arcs
- Powered in groups resulting in 6 families
- Symmetric operation of all cells leads to a sixfold symmetry of the β-functions

Arcs:

- 3 mirror-symmetric unit cells with a DOFO-OFOD structure in the arcs
- Powered in groups resulting in 6 families
- Symmetric operation of all cells leads to a sixfold symmetry of the β-functions

Straights:

- 2 mirror-symmetric telescopic arrangements with two quadrupole triplets
- A 2π phase advance and 1:1 imaging over the complete straight section
- Decoupling to first order the arcs from the straight sections
- Providing 3 possible locations per straight section for internal target experiments with adjustable β-functions in the center of the triplets

Sextupole magnets:

- 18 sextupoles
- Grouped into 11 families,
- 3 of them are placed in the arc for chromatic corrections
- 8 reside in the telescopes to form the separatrix for the outgoing particles

Dispersion = 0 in the straights:

- Modification of arc quadrupole families
- 2-fold symmetry

Low- β section:

- Additional quadrupole magnets
- Increase of geometrical acceptance
- $-\beta_{x,y} \approx 0.3 m$

Sextupole magnets:

- 18 sextupoles
- Grouped into 11 families,
- 3 of them are placed in the arc for chromatic corrections
- 8 reside in the telescopes to form the separatrix for the outgoing particles

Dispersion = 0 in the straights:

- Modification of arc quadrupole families
- 2-fold symmetry

Low- β section:

- Additional quadrupole magnets
- Increase of geometrical acceptance
- $-\beta_{x,y} \approx 0.3 m$

Status of COSY model

Working point

- Significant difference between calculated and measured tune
- Up to now: empiric adjustment of quadrupole calibration factors
- Model adjustment to measured working points required $Q_x = 3.608$; $Q_y = 3.615$

LOCO (linear optics from closed orbit)

Orbit response matrix

 ORM entries contain the response of the beam position at the BPMs(i) to changes of corrector magnets (j)

SH13 - bpmx22

- ORM can be used for orbit correction
- ... and to calibrate and correct linear optics

LOCO

- LOCO was successfully applied at several electron storage rings
 Idea:
- Calculate orbit response matrix using the existing COSY model (MAD-X)
- Vary parameters of the lattice model to minimize difference between M^{mod} and M^{meas}

$$\chi^2 = \sum_{i,j} \frac{(M_{i,j}^{mod} - M_{i,j}^{meas})^2}{\sigma_{M_{meas,i,j}}^2} = \sum_{k=i,j} E_k^2$$

 $\sigma_{M_{\mathrm{meas},ij}}$: errors of linear fit to the beam displacment at each BPM(i) as function of the current in each steerer magnet(j)

Goal:

- Determination of correct lattice parameter settings to improve model
- Correct unacceptable misalignments or calibration factors

Loco - Theory

Possible fit parameters @ COSY

Parameter	No.
BPM calibration	60
BPM roll (ψ), shift (s)	2 · 60
Steerer calibration	40
Steerer roll (ψ), shift (s)	2 · 40
Gradient of quadrupoles	56
Gradient of quad families	14
Quadrupole rotations (φ, θ, ψ) , shifts (x, y, s)	6 · 56

Parameter	No.
Dipole rotations (φ, θ, ψ) , shifts (x, y, s)	6 · 24
K1 of dipole magnets	24
K2 of dipole magnets	24
Deflection angle (offset)	40
K2 of sextupoles	14

Sum	952

- Typical COSY ORM contains BPM ⋅ Steerer = 2400 data points
- Not all can be fitted simultaneously
- ORM is not sensitive to all parameters

Loco - Theory

Algorithm

$$\chi^{2} = \sum_{i,j} \frac{(M_{i,j}^{mod} - M_{i,j}^{meas})^{2}}{\sigma_{i,j}^{2}} = \sum_{k=i,j} E_{k}^{2}$$

- Determine dE_k / dK_l by varying model parameters (number of entries = 2400 · parameter)

$$-E_k = \frac{dE_k}{dK_l} \cdot \Delta K_l$$

- Invert dE_k / dK_l using SVD analysis

$$\frac{dE_k}{dK_l} = USV^T = \sum \vec{u}_l w_l \vec{v}_l^T$$

Calculate parameter settings

$$\Delta K = -\sum \vec{v}_l \frac{1}{w_l} \vec{u}_l^T \cdot E_k$$

Benchmarking

 Simulation of ORM measurement with randomly generated parameter settings (Gaussian distributed)

Evaluation of results by reconstruction of Orbit response matrix teration 1 (rms = 0.033 mm/mrad) iteration 2 (rms = 0.0312 mm/mrad) eration 3 (rms = 1.9e-03 mm/mrad Beam optics $(\Delta \beta / \beta)$ teration 5 (rms = 9.6e-05 mm/mrad Parameter settings $(\Delta k = k_{\text{meas}} - k_{\text{mod}})$ Δ M_{i,i} (mm/mrad) teration 0 (max = 0.50, rms = 0.23) 0.08 iteration 1 (max = 2.0e-01, rms = 4.4e-02) iteration 2 (max = 1.3e-02, rms = 3.8e-03) ration 2 (max = 0.04 ms = 0.03) iteration 3 (max = 1.4e-03, rms = 4.8e-04) 0.06 ration 3 (max = 5.9e-04, rms = 2.6e-04) iteration 4 (max = 2.7e-04, rms = 7.9e-05) ration 4 (max = 1.6e-04, rms = 6.6e-05) 0.04 0.02 0.2 -0.02-0.04-0.2-0.06100 120 140 160 Quadrupole

Position in COSY (m)

Benchmarking (good reconstruction):

Longitudinal position of quadrupoles

Benchmarking (only optics improvement):

Transverse position of quadrupoles

Benchmarking

- Good reconstruction: BPM and steerer (ds, dψ), Quad (ds, dψ, K1),
 Dipole (K1, K2, ds, dψ), Sextupoles (K2)
- Only optics improvement: Quad (dx, dy, dθ)
- Not sensitive: BPM and steerer (dx, dy, dφ, dθ), Quad (dφ)

Benchmarking – fitting multiple parameters

Quadrupole K1, Quadrupole ds

Benchmarking

- Sensitivity to different parameters (e.g. quadrupole gradients)
- Influence of error of beam position measurement
- Sensitivity to truncated rank of matrix in SVD analysis
- Sequence of parameter adjustment
- Effect of step size of parameter variation

Beam optics studies

Machine parameters

- Proton beam of 2.6 GeV/c momentum
- Regular COSY optics (D≠0)
- ORM measured for different settings of quadrupole families

Quadrupole	Δk	date
familie	%o	
MQU 6	0	2015 - 11 - 11 - 19 - 38 - 07
MQU 6	+20	2015 - 11 - 11 - 20 - 24 - 38
MQU 6	-20	2015 - 11 - 11 - 21 - 11 - 18
MQT 3	+20	$2015 - 11 - 12_08 - 54 - 56$
MQT 3	-20	$2015 - 11 - 12_09 - 31 - 24$
MQU 2, MQU 6	+10	
MQU 4, MQU 5	+20	$2015 - 11 - 12_11 - 49 - 47$
MQU 4, MQU 5	-20	$2015 - 11 - 12_13 - 19 - 31$

Procedure

- Analysis of measured ORM data with respect to LOCO analysis
 - Determine and exclude non-working components
 - Conversion of entries using calibration data of steerers

- Set LOCO configuration (different sequences)
- Averaging of resulting parameters and comparison for different measurements

Steerer and BPM calibration

- Detection of wrongly oriented BPMs
- Detection of wrongly oriented steerer magnets
- Variation of vertical steerer calibration factors larger than horizontal

Quadrupole strength

- Determination of individual gradients factors
- Absolute values are difficult to judge at this point
- Detection of changed gradient factors between individual measurements
- 4 % change was applied to quadrupole family MQT3 (number 2)

Tune reconstruction (empirically adjusted starting point)

Tune reconstruction (empirically adjusted starting point)

Tune reconstruction works for arbitrary starting points

Summary

- Loco program was succesfully developed
- Benchmarking almost finished
- First test with measured data
 - Quadrupole change detected
 - Measured tunes perfectly reconstructed

Plan:

- Determine magnet displacements and compare with recent survey measurement
- Improved ORM measurement (more data points)
- Outlier data rejection
- Automatic step size finder
- Implementation of additional minimization algorithm
- Multi-core processing

Literature

- [1] D. Ji, "First experience of applying LOCO for Optics measurement at COSY", IPAC 16, Busan, South Korea, 2016.
- [2] M. Rosenthal, "Experimental Benchmarking of Spin Tracking Algorithms for Electric Dipole Moment Searches at the Cooler Synchrotron COSY", PhD thesis, 2016.
- [3] J. Safranek, Nucl. Instrum. Meth. A 388, 27 (1997).

Additional slides

Status of COSY model

Dispersion

 $\Delta D/D_{meas} \approx 0.4$

$$- \frac{\Delta\beta}{\beta} \approx 30 - 50 \% [1]$$

- High demands on beam control and beam based measurements, e.g. $\Delta x_{rms} < 0.1 \ \text{mm}$ [2]
 - ➤ Improvement of COSY model required!

Status of COSY model

Dispersion

Measure orbit for different rf-frequencies

$$x(s) = x_0(s) + D(s)\frac{\Delta p}{p}$$

$$\Delta x(s) = D(s) \frac{\Delta E}{E} = \frac{D(s)}{\eta} \frac{\Delta C}{C} = -\frac{D(s)}{\eta} \frac{\Delta f_{rf}}{f}$$

D...dispersion,

 η ... phase slip factor,

C ...length of accelerator

Orbits for QU6_0

- Acceptance
- Tune, tune adjustment

<u>Benchmarking – fitting multiple parameters</u>

```
# LOCO config file
# General Settings
generateMeasurement
                                1
                                                                //0..Measurement,1..Simulation
iterations
                                15
                                                                //Number of iterations
                                                                //Number_of_parameter_variations
nvariation
                                3
                                                                //Number of steerer steps for ORM
errBPMMeasurement
                                1E-9
                                                                //Measurement error of BPMs
# Which parameters?
varyBPMgain
                                                                //Include gain factor of BPM
varySteerergain
                                                                //Include gain factor of steerer
varyBPMPosition
                                                                //Include position of BPM
varySteererPosition
                                                                //Include_position_of_Steerer
varyQuadFamilies
                                                                //Include gradient of quadrupole families
varv0uadStrength
                                                                //Include gradient of quadrupoles
varyKickAngle
                                                                //Include error of kickangle
varyQuadPosition
                                                                //Include position of quadrupoles
varyBend K1
                                                                 //Include K1 of dipoles
varyBend K2
                                                                make//Include K2 of dipoles
                                                                //Include K2 of sextupoles
varvSext K2
varyBendPosition
                                                                //Include position of dipoles
#Which parameter when? BPMgain//Steerergain//BPMposition//SteererPosition//QuadGradients(family)//
QuadGradients(all)//KickAngle//QuadPosition//DipolPosition
                                11001000000
                                                                 //Parameters to adjust in 1st iteration
iteration1
iteration2
                                11001000000
                                                                //2nd iteration
iteration3
                                11001000000
                                                                //3rd iteration
iteration4
                                11001000000
                                                                //4th iteration
                                11001000000
iteration5
                                                                //5th iteration
                                11001000000
                                                                //6th iteration
iteration6
iteration7
                                11001000000
                                                                 //7th iteration
                                11001000000
iteration8
                                                                //8th iteration
iteration9
                                                                //9th iteration
                                11001000000
10th iteration(this setting is used for every following iteration)
# Sigma for simulated measurements
sigmaGains
                                                                //Sigma of gain variation(%/100)
sigmaKickAngle
                                                                 //Sigma of kick angle variation(rad)
sigmaQuadGradient
                                                                 //Sigma of guad gradient variation(%/100)
                                                                //Sigma_of_quad_displacement(m)
sigmaQuadDisplacement
                                0.001
sigmaQuadAngle
                                0.01
                                                                //Sigma of quad angle variation(rad)
sigmaDipQuad
                                0.0001
                                                                //Sigma of quadcomp of dipoles(m^-2)
sigmaDipSext
                                0.05
                                                                //Sigma_of_sextupole_comp_of_dipoles(m^-3)
sigmaSextSext
Sigma of sextupole comp of sextupoles(m^-3)
sigmaBendDisplacement
                                0.001
                                                                 //Sigma of dipole displacement(m)
sigmaBendAngle
                                                                //Sigma of dipole angle variation(rad)
#Choose Misalignment
                        dX/dY/dS/dPhi/dTheta/dPsi
misBPM
                                000001
                                                                //Details of misalignments(BPM)
misSteerer
                                000001
                                                                 //Details of misalignments(Steerer)
misOuad
                                001000
                                                                 //Details of misalignments(Quadrupoles)
                                                                //Details of misalignments(Dipoles)
misBend
                                000001
# Filenames !
filenameInputSteerers
                                config/steerer.dat
                                                                                         //
```

Name of steerers for ORM

Exemplary config file:

- 15 iterations
- Number of variations
- BPM uncertainty (1E-9 m)
- Vary BPM gain, Steerer gain, quadrupole strength
- Fit parameters per iteration

_

Benchmarking

- Different combinations of parameter settings yield the same beam response (degeneracy)
- No unique result detectable
- Fixing parameters helps to overcome the degeneracy problem
- Requires calibration of fixed parameters

Benchmarking – some results

- Performance of parameter reconstruction and optics determination depends significantly on BPM errors
- Sensitivity to step size depends on linearity of ORM to parameter change
- BPM and steerer gains work perfect (degeneracy problem when fitting both simultaneously can be avoided by fixing one component)
- Good reconstruction: BPM and steerer (ds, dψ), Quad (ds, dψ, K1),
 Dipole (K1, K2, ds, dψ), Sextupoles (K2)
- Only optics improvement: Quad (dx, dy, dθ)
- Not sensitive: BPM and steerer (dx, dy, dφ, dθ), Quad (dφ)
- Fitting combinations of parameters has partly been studied

Benchmarking – fitting multiple parameters

```
# LOCO config file
# General Settings
generateMeasurement
                                                                 //0..Measurement,1..Simulation
iterations
                                15
                                                                 //Number of iterations
                                                                 //Number_of_parameter_variations
nvariation
                                3
                                                                 //Number of steerer steps for ORM
nSteps
errBPMMeasurement
                                1E-9
                                                                 //Measurement error of BPMs
# Which parameters?
varyBPMgain
                                                                 //Include gain factor of BPM
                                                                 //Include gain factor of steerer
varySteerergain
varyBPMPosition
                                                                 //Include position of BPM
varySteererPosition
                                                                 //Include position of Steerer
varyQuadFamilies
                                                                 //Include gradient of quadrupole families
varyQuadStrength
                                                                 //Include gradient of quadrupoles
varyKickAngle
                                                                 //Include error of kickangle
varyQuadPosition
                                                                 //Include position of quadrupoles
varyBend K1
                                                                 //Include K1 of dipoles
varyBend K2
                                                                 make//Include K2 of dipoles
                                                                 //Include K2 of sextupoles
varvSext K2
varyBendPosition
                                                                 //Include position of dipoles
#Which parameter when? BPMgain//Steerergain//BPMposition//SteererPosition//QuadGradients(family)//
QuadGradients(all)//KickAngle//QuadPosition//DipolPosition
iteration1
                                11001000000
                                                                 //Parameters to adjust in 1st iteration
iteration2
                                11001000000
                                                                 //2nd iteration
iteration3
                                11001000000
                                                                 //3rd iteration
iteration4
                                11001000000
                                                                 //4th iteration
                                                                 //5th iteration
                                11001000000
iteration5
iteration6
                                11001000000
                                                                 //6th iteration
iteration7
                                11001000000
                                                                 //7th iteration
                                11001000000
iteration8
                                                                 //8th iteration
iteration9
                                11001000000
                                                                 //9th iteration
                                11001000000
iteration10
10th iteration(this setting is used for every following iteration)
# Sigma for simulated measurements
sigmaGains
                                                                 //Sigma of gain variation(%/100)
sigmaKickAngle
                                0.01
                                                                 //Sigma of kick angle variation(rad)
sigmaQuadGradient
                                                                 //Sigma of guad gradient variation(%/100)
sigmaQuadDisplacement
                                0 001
                                                                 //Sigma_of_quad_displacement(m)
sigmaQuadAngle
                                0.01
                                                                 //Sigma of quad angle variation(rad)
sigmaDipQuad
                                0.0001
                                                                 //Sigma of quadcomp of dipoles(m^-2)
sigmaDipSext
                                0.05
                                                                 //Sigma_of_sextupole_comp_of_dipoles(m^-3)
sigmaSextSext
Sigma of sextupole comp of sextupoles(m^-3)
sigmaBendDisplacement
                                0.001
                                                                 //Sigma_of_dipole_displacement(m)
sigmaBendAngle
                                                                 //Sigma of dipole angle variation(rad)
#Choose Misalignment
                        dX/dY/dS/dPhi/dTheta/dPsi
                                000001
                                                                 //Details of misalignments(BPM)
                                000001
                                                                 //Details of misalignments(Steerer)
misSteerer
misQuad
                                001000
                                                                 //Details of misalignments(Quadrupoles)
misBend
                                000001
                                                                 //Details of misalignments(Dipoles)
# Filenames !
filenameInputSteerers
                                config/steerer.dat
                                                                                         //
Name of steerers for ORM
```


Tune reconstruction (arbitrary starting point)

- Model
- Measurement
- ★ Fit

Tune reconstruction (arbitrary starting point)

- Model
- Measurement

c.weidemann@fz-juelich.de 18. November 2016 Slide 36