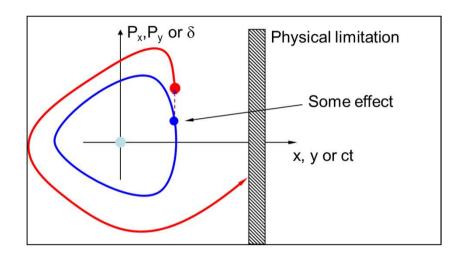


Impact of vacuum quality in light sources: beam lifetime and ion instabilities

U. Iriso

ALBA - CELLS

U. Iriso ESLS XXIII Nov. 2015



OUTLINE

- 1. Beam Lifetime
 - a) Analytical description
 - b) Observations in Light Sources
- 2. Ion Instabilities
 - a) Analytical description
 - b) Observations in Light Sources
- 3. Conclusions

Lifetime: Particle Loss in LS

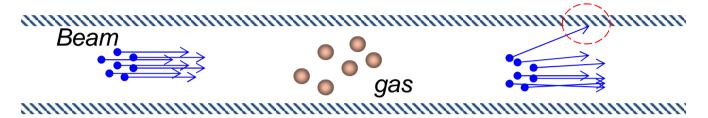
Main Lifetime contributors:

1. Gas Lifetime:

Interactions with residual gas nucleus or electrons (elastic or inelastic)

2. Touschek effect:

Interactions among beam particles with energy transfer.


3. Quantum Lifetime:

Emission of radiation quanta when particles are close to the aperture limitations. Usually negligible, since it is ~1e5h or more.

Elastic Gas Scattering

Deflections caused by the **electrical force** of the residual gas atoms

Simplified Eqs*:
$$\frac{1}{\tau_{\rm nuclei-elastic}} \approx \frac{2\pi r_e^2 c Z^2}{k_B T \gamma^2} \frac{\langle P_i \cdot \beta_{y_i} \rangle}{A^2} \, .$$

$$\frac{1}{\tau_{\rm electron-elast}} \approx \frac{2\pi r_e^2 cPZ}{k_B T \gamma} \frac{1}{\delta_{\rm acc}}$$

Note for LS, e-elast ~ [2-3] orders of magnitude larger

- Number of residual particles (pressure):
- Particle Charge:
- Beta function.
- Vacuum chamber:
- Beam energy:

$$P\uparrow \rightarrow \tau \downarrow$$

$$\beta \uparrow \rightarrow \tau \downarrow$$

$$A\uparrow \rightarrow \tau\uparrow$$

$$\gamma \uparrow \rightarrow \tau$$

Inelastic Gas Scattering

Energy loss caused by radiation emission (mostly) at the

vicinity of the gas atoms.

Simplified Eqs*:

$$=rac{1}{ au_{
m nuclei-inelast}} pprox rac{4r_e^2cPZ^2}{137k_BT}rac{4}{3}\ln\left(rac{183}{Z^{1/3}}
ight) \left[\ln\left(rac{1}{\delta_{
m acc}}
ight) - rac{5}{8}
ight]$$

$$\frac{1}{\tau_{\rm electron-inelast}} \approx \frac{4 r_e^2 c P Z}{137 k_B T} \frac{4}{3} \ln \left(\frac{2.5 \gamma}{\delta_{\rm acc}} - 1.4 \right) \left[\ln \left(\frac{1}{\delta_{\rm acc}} \right) - \frac{5}{8} \right]$$

Both shall be accounted for LS

RF

particle escapes the

bucket potential well

- 1. Number of residual particles (pressure):
- 2. Charge of every particle:
- 3. RF acceptance.

$$P \uparrow \rightarrow \tau \downarrow$$

$$Z \uparrow \rightarrow \tau \downarrow$$

$$\delta_{acc}{\uparrow}{\to}\tau{\uparrow}$$

Touscheck Lifetime (I)

- **Limiting effect in LS** (although not in the scope of this workshop)
- Due to energy exchange between particles within the bunch, which can bring the particles out of the energy acceptance
- It is not exponential, but assymptotic:

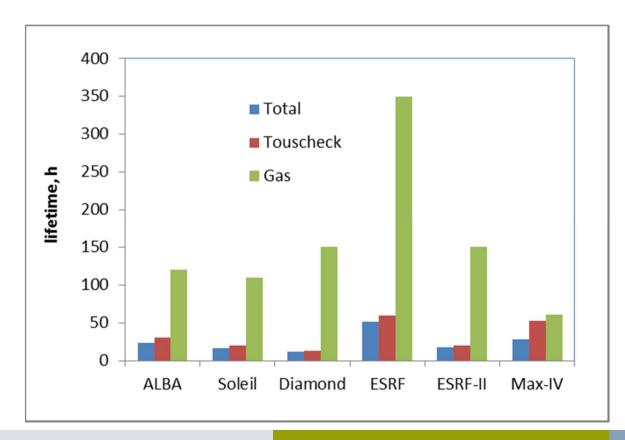
$$\frac{dN(t)}{N(t)dt} = -aN(t) \qquad \longrightarrow \qquad N(t) = \frac{N_0}{1 + t/\tau}$$

τ complex expression*, but its main dependencies:

$$\tau_t \propto \frac{\sqrt{\varepsilon_y}\sigma_z}{I_b}\delta_{acc}^3$$
 \longrightarrow Product $\tau^* I_b = ct$, widely used in LS (instead of τ)

- 1. $V_{RF} \uparrow \rightarrow RF$ acceptance
- Beam density (coupling, bunch length). ρ↑→τ↓
 Beam bunch intensity: I_b↑→τ↓

$$\delta_{acc}\uparrow \rightarrow \tau\uparrow$$

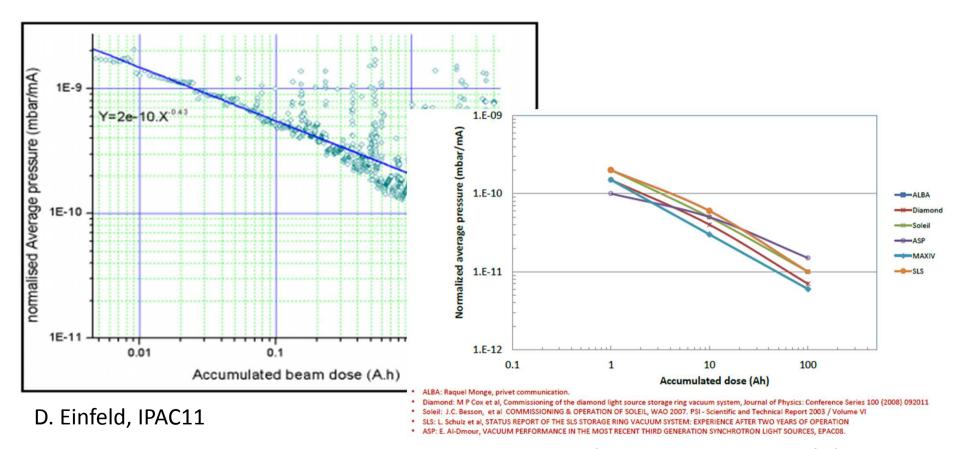

$$\rho\uparrow \rightarrow \tau \downarrow$$

$$I_b \uparrow \rightarrow \tau$$

Lifetime in LS

- Lifetime in LS is dominated by Touscheck effect, except in MAX-IV prediction@500mA
- Gas lifetime (including elastic & inelastic) only important at early commissioning phases or during installation of new IDs

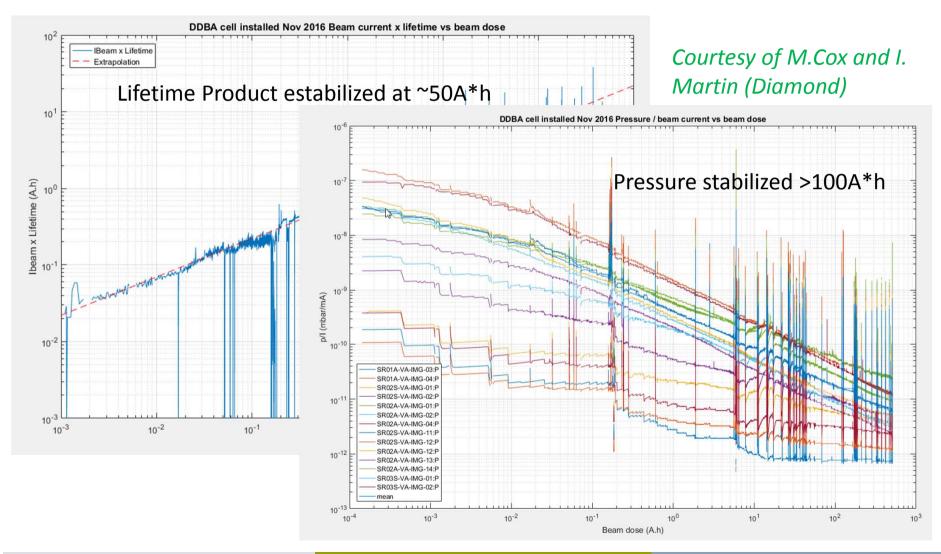
Soleil: X.N. Gavalda, Phd Thesis


Diamond: I. Martin, priv. communications ESRF: N. Carmignani, priv. communications MAX-IV: S.C. Leeman, PRST-AB 12, 120701

(2009) - **500mA**

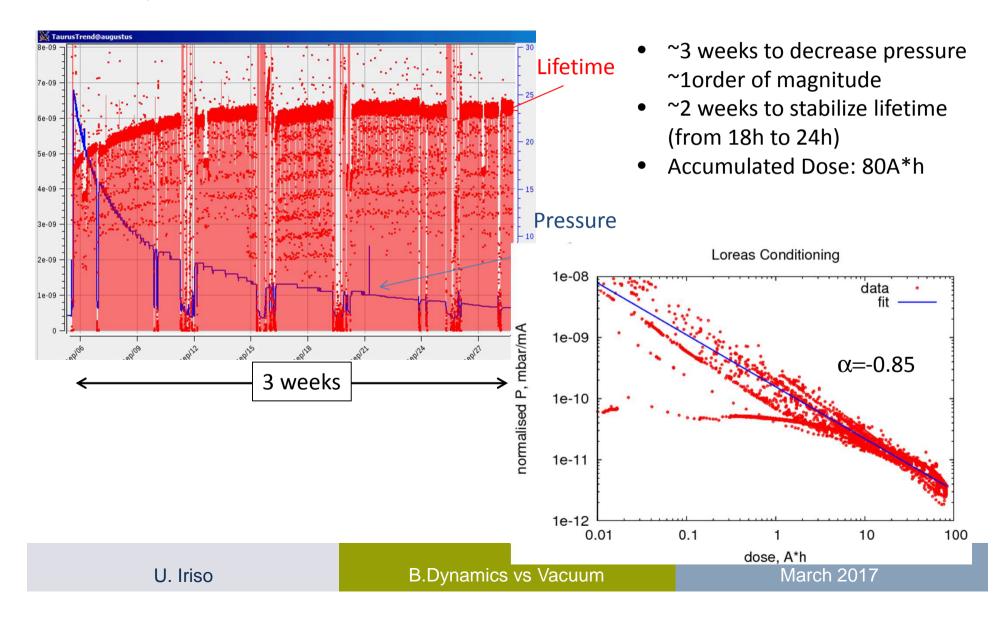
Gas Lifetime in LS: commissioning

- Rule of thumb: Gas lifetime ~100h, when P-avg<1e-9, which is usually achieved after ~100 A*h
- At ALBA, this was achieved after ~6 months of operation



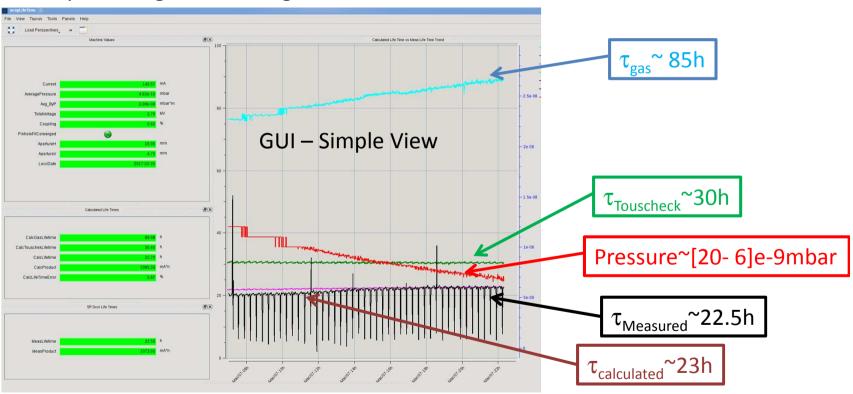
E. Al-Dmour, XXIV SLS Workshop, 2016

<u>Installation of new components</u>


Example: Complete Cell exchange in Diamond

<u>Installation of new components</u>

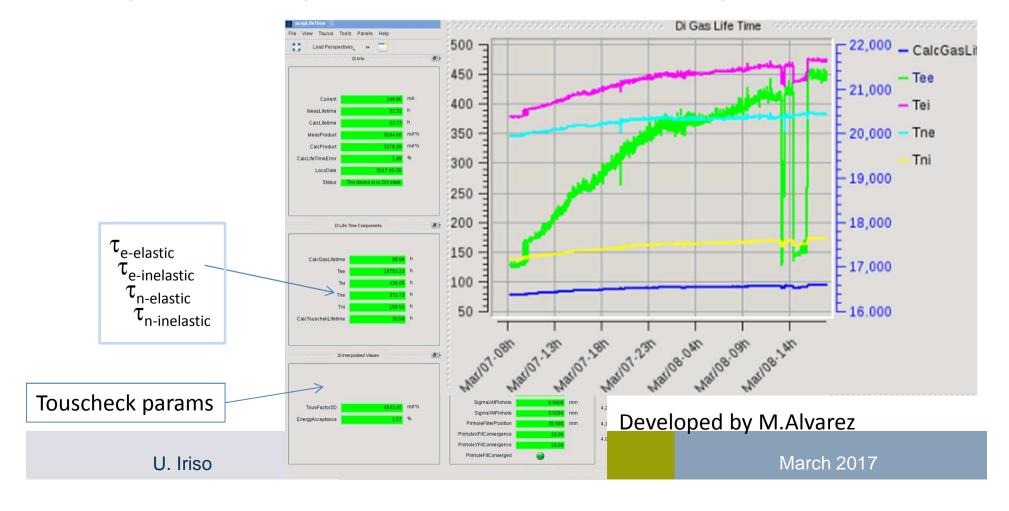
Example: New Insertion Device (Loreas) @ALBA



<u>Lifetime Calculator GUI</u>

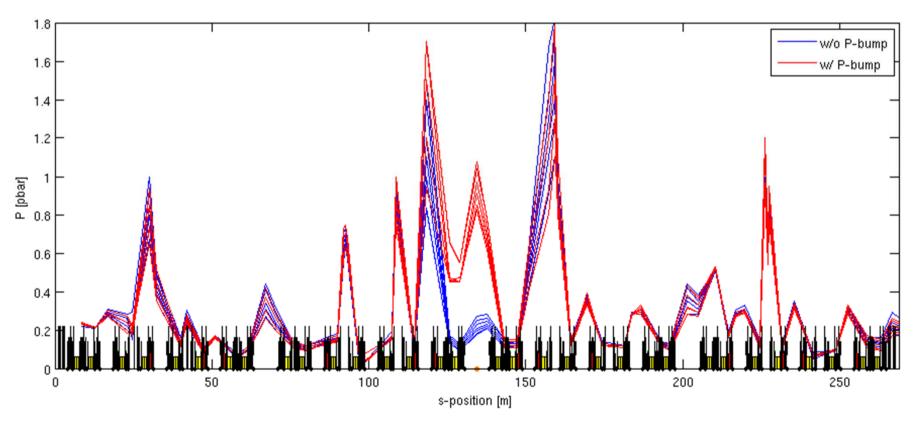
- Used at ALBA Control Room to crosscheck machine performance
- P@CCG, $\beta_{x,y}$ functions, ϵ_{xy} , cross sections, etc calculated on-line --> also τ_{gas} & $\tau_{Touscheck}$

Example during conditioning of new vac. chamber

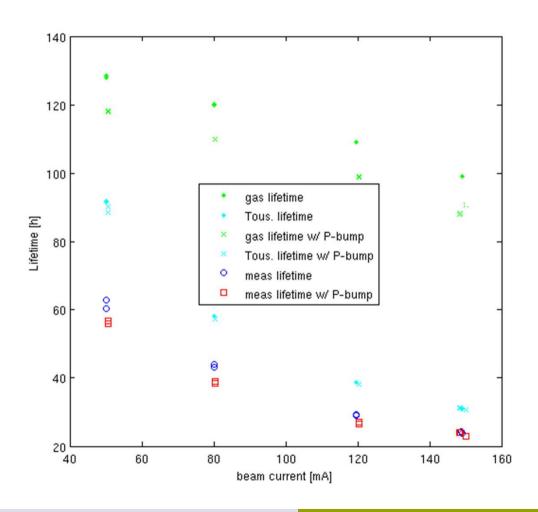


Lifetime Calculator GUI

- Used at ALBA Control Room to crosscheck machine performance
- P@CCG, $\beta_{x,y}$ functions, ϵ_{xy} , cross sections, etc calculated on-line --> also τ_{gas} & $\tau_{Touscheck}$


GUI – Expert View: allows you to control/measure all lifetime related params

Controlled pressure bump


- Experiment goal: change gas lifetime w.o. varying Touscheck
- Switch off Ion Pumps in one sector (out of 16).
- NEG pumping on → pressure increase ~1 order of magnitude in the Cell

Controlled pressure bump

Lifetime comparison at different beam currents

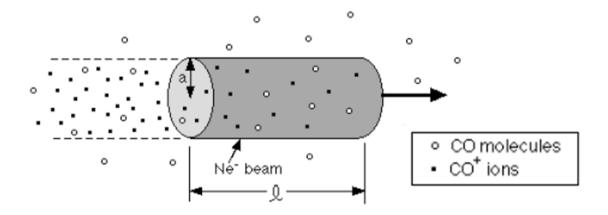
At 50mA, the lifetime difference is only 10%.

At 150mA, the differences are barely noticeable, since Touscheck lifetime dominates

OUTLINE

- 1. Beam Lifetime
 - a) Analytical description
 - b) Observations in Light Sources
- 2. Ion Instabilities
 - a) Analytical Description
 - b) Observations in Light Sources
- 3. Conclusions

Ion Instabilities in LS

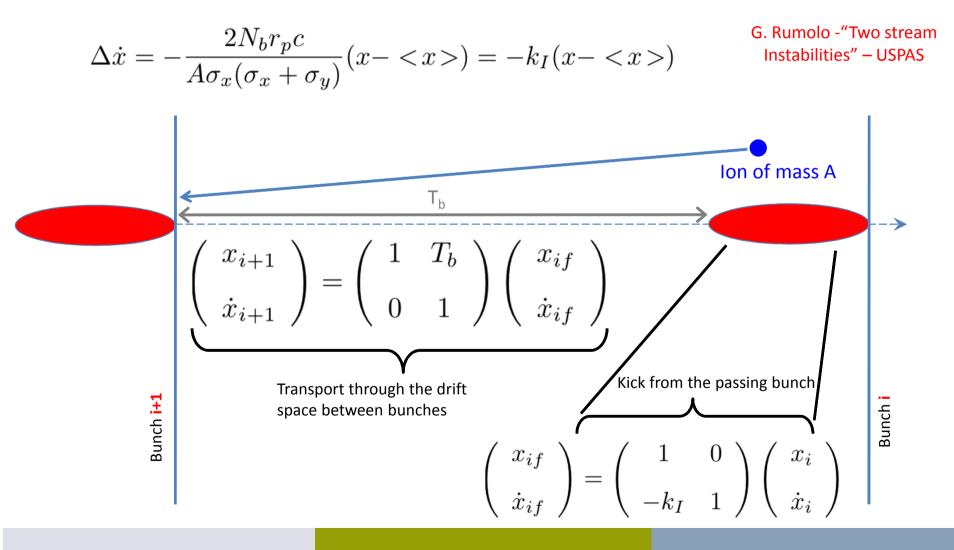

See G. Rumolo and R. Nagaoka talks

- Rest gas ionization produced by e-beam generates ions inside vac. chamber
- Ions are heavy particles and they usually feel only a sequence of attractive kicks from the bunches, which keep them confined near the beam core
- If the ion trapping condition is fulfilled, the ion remains oscillating around the beam
- The Ion Instabilities can be either:
 - "Ion Trapping Instability" (ITI): multi-turn ion accumulation that degrades beam quality (cured typically with abort gap)
 - "Fast Beam Ion Instability" (**FBII**), the ion production & accumulation occur within one turn, affecting mainly last bunches in the train.
- Main consequences: emittance growth, tune shift, pressure rise...

Ion Instability: ion generation

- Rest gas ionization produced by e-beam generates ions inside vac. chamber

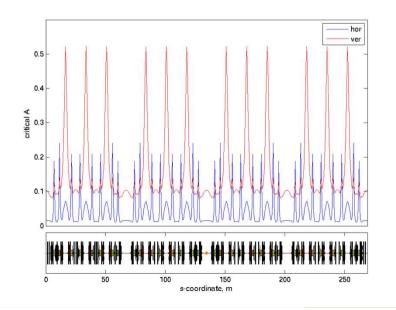
Scattering ionization (depends on cross section σ_{ion})


$$\lambda = \frac{N_b}{k_B T} \sum_{n=1}^{N} P_n \sigma_n$$
 ~20 ions/bunch/m (ALBA, P=1pbar, σ_{ion} = 2MB - CO)

 Field ionization could also happen above a certain threshold, but negligible in current LS – may be relevant for CLIC Linacs

U. Iriso

Ion Instability: Trapping Condition


Ion Instability: Trapping Condition

Ion Motion easily expressed in matrix notation:

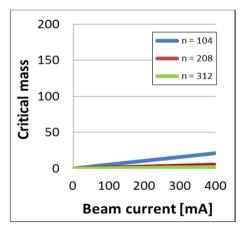
$$\begin{pmatrix} x_{i+1} \\ \dot{x}_{i+1} \end{pmatrix} = \begin{pmatrix} 1 - k_I T_b & T_b \\ -k_I & 1 \end{pmatrix} \begin{pmatrix} x_i \\ \dot{x}_i \end{pmatrix} = \underline{\mathbf{A}} \cdot \begin{pmatrix} x_i \\ \dot{x}_i \end{pmatrix}$$

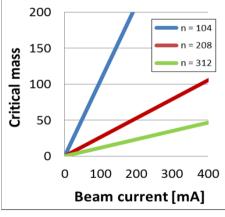
Stability if Tr(A) < 2:

$$A_{crit} > \frac{N_B r_p s_B}{2\sigma_y (\sigma_x + \sigma_y)}$$
 - Assumed Gaussian beams - Ions with atomic mass > A_{crit} are trapped!

ALBA @150mA:

- All ions can be trapped!!
- It does not affect ALBA due to use of abort gaps and low pressure (~1e-10mbar)
- Dependence on lattice position through (σ_x, σ_y)


Ion Instability: Trapping Condition


Ion Motion easily expressed in matrix notation:

$$\begin{pmatrix} x_{i+1} \\ \dot{x}_{i+1} \end{pmatrix} = \begin{pmatrix} 1 - k_I T_b & T_b \\ -k_I & 1 \end{pmatrix} \begin{pmatrix} x_i \\ \dot{x}_i \end{pmatrix} = \underline{\mathbf{A}} \cdot \begin{pmatrix} x_i \\ \dot{x}_i \end{pmatrix}$$

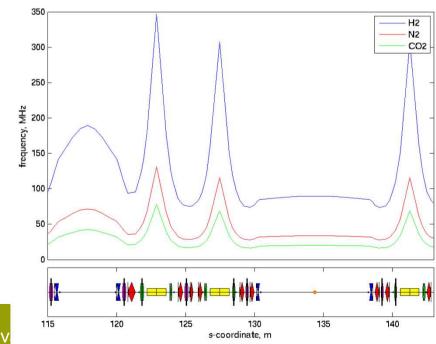
Stability if Tr(A) < 2:

$$A_{crit} > \frac{N_B r_p s_B}{2\sigma_y (\sigma_x + \sigma_y)}$$
 - Assumed Gaussian beams - Ions with atomic mass > A_{crit} are trapped!

- R. Nagaoka talk
- For low-e rings, A_{crit} increases

Ion Instability: Osc. Frequency

From
$$\Delta \dot{x} = - rac{2 N_b r_p c}{A \sigma_x (\sigma_x + \sigma_y)} \left(x_i - \langle x \rangle \right)$$
 and $\ddot{\mathbf{x}} = \Delta \mathbf{x} / \mathsf{T_B}$


We get the ion **oscillation frquency**:

$$\omega_{ion}^2 = \frac{2N_B c r_p}{A\sigma_y(\sigma_x + \sigma_y)T_B}$$

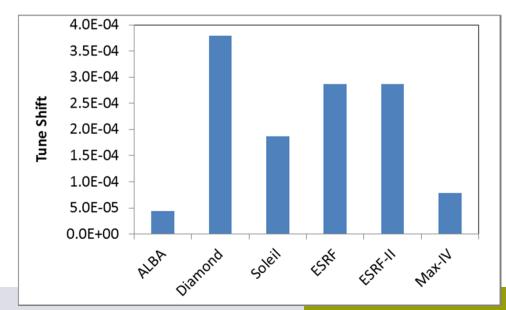
observable with spectrun analyser

ALBA Case @150mA in one sector:

- Inversely proportional to A
- Between \sim [10 300MHz]
- Also depends on s-position

Ion Instabilities: tune shift

Induced tune shift due to focusing force:

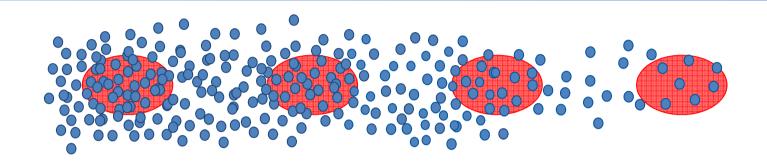

$$\Delta v_{\beta} = +\frac{I_p r_e \eta}{2\pi e c(\beta_c)^3 \gamma B_f} \oint \frac{\beta_y ds}{\sigma_y (\sigma_x + \sigma_y)}$$

An easier simplification from above equation is:

$$\Delta v_y = \frac{r_e \lambda_{ion} C < \beta_y >}{4\pi \gamma \sigma_y (\sigma_x + \sigma_y)}$$

Note:

- positive tune shift
- For FBII, λ_{ion} depends on the bunch #, so the tune shift depends on the bunch 3



CO ions; P=1pbar; σ_{ion} = 2MB Nominal operation conditions

Tune shift small, but measurable

<u>Fast Beam Ion Instability - FBII</u>

- → The ions accumulate along one bunch train
- → Head and tail of the train are coupled through the ions
- → Coupled motion between ions & e-beam: ions "keep memory" of the offset of the generating bunch and transfer this information to the following bunches.
- → The driven oscillation is expected to be at a main frequency related to the ion oscillation frequency.

See analytical models at:

Raubenheimer *et al.* Phys. Rev. E 52, 5, 5487, Stupakov *et al.* Phys. Rev. E 52, 5, 5499

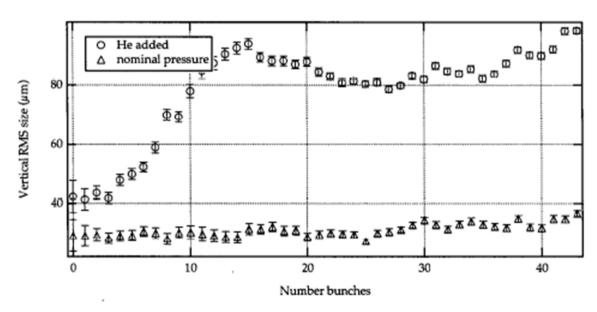
Fast Beam Ion Instability - FBII

Analytical instability models* allow to estimate rise times:

$$\frac{1}{\tau_e} \approx \frac{1}{3} \sqrt{\frac{2}{3}} \frac{c}{\Delta \omega_i / \omega_i} \beta_y k_y \qquad \text{With } K_y \text{ the focusing strength} \qquad k_y = \frac{\lambda_i r_e}{\gamma \sigma_y (\sigma_x + \sigma_y)}$$

- This gives rise times ~2us range at ALBA, although coherence effects along the ring can increase this rise times by 1-2 orders of magnitude
- Each case needs a careful analysis
- Computer simulation codes (FASTION ad PyHEADTAIL**) can be used to carefully calculate these rise times.

*Raubenheimer *et al.* Phys. Rev. E 52, 5, 5487, Stupakov *et al.* Phys. Rev. E 52, 5, 5499

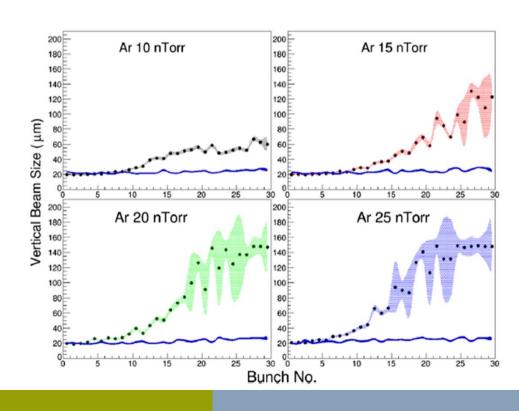

**L.Mether, "Numerical model of FBII", Proc. of HB2016 A.Chaterjee et al, PRST-AB 18 064402 (2015)

- Fast Beam Ion Instabilities observed in LS are produced artificially induced by injecting gas into the vacuum chamber
- See examples at ALS & CESR

ALS experiment*:

- all Ion Pumps off
- Inject He: avg P from 0.25 to 80 nTorr

*J.Byrd et al, PRL 79, 1 (1997)



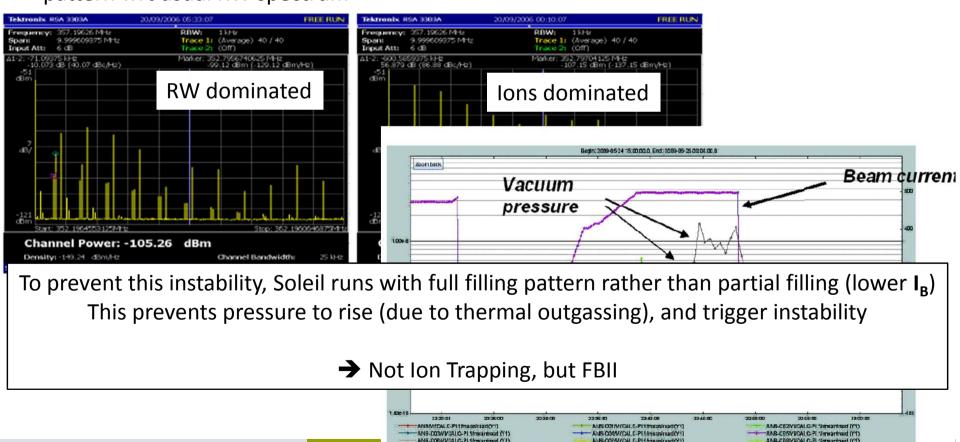
- Fast Beam Ion Instabilities observed in LS are produced artificially induced by injecting gas into the vacuum chamber
- See examples at ALS & CESR

CESR experiment*:

- Localized pressure bump of ~10m
- Inject Ar and Kr: from 1 to 25 nTorr

- Beam Size observation
- BBB feedback can damp instability
- Observations match well with simulations using FASTION

^{*}A.Chaterjee et al, PRST-AB 18 064402 (2015)

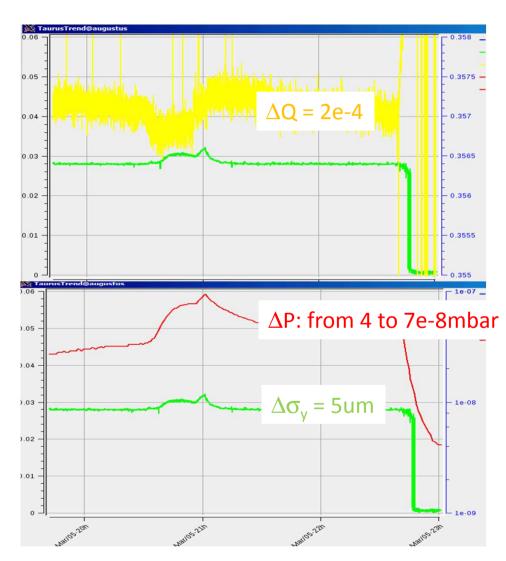


Beam Spectra and Pressure Rise in Soleil

R. Nagaoka, IPAC'10

NB-C11/VICALO-PL-Vimeprired (Y1)

- Soleil is so far the only LS affected by ions during operation
- The beam spectrum for ions dominated instabilities show a distinct pattern wrt usual RW spectrum

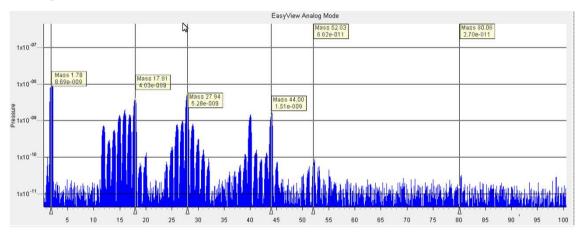

Installation of CLIC SL Kicker @ALBA

(Data from 6/3/2017)

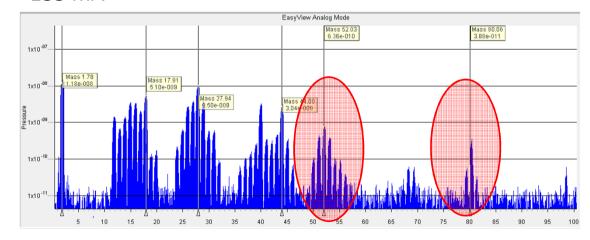
While conditioning the new vacuum chamber, injecting from **125mA** to **135mA** produced a:

- -pressure rise: ~3e-8mbar
- -beam blow up (by 20%)
- -tune shift of 2e-4
- -BBB feedback could not damp it

Compatible with ion instabilities in this case produced by larger atomic masses (see next)

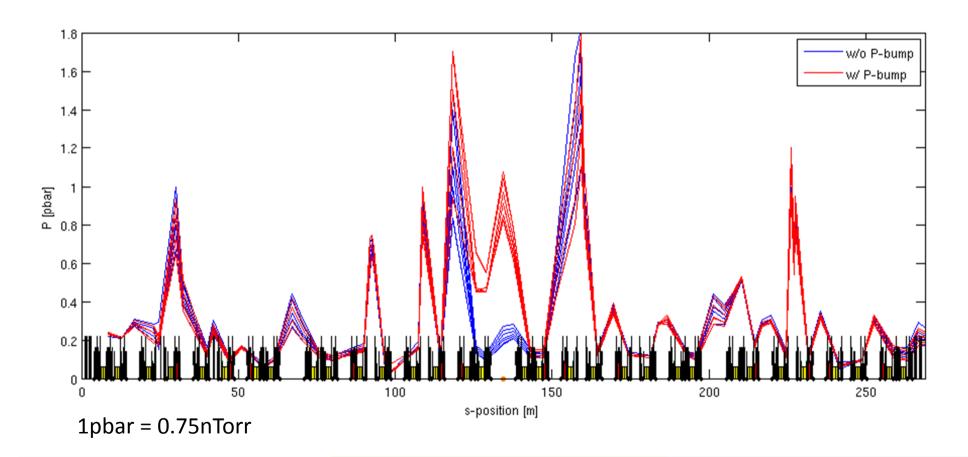


Installation of CLIC SL Kicker @ALBA

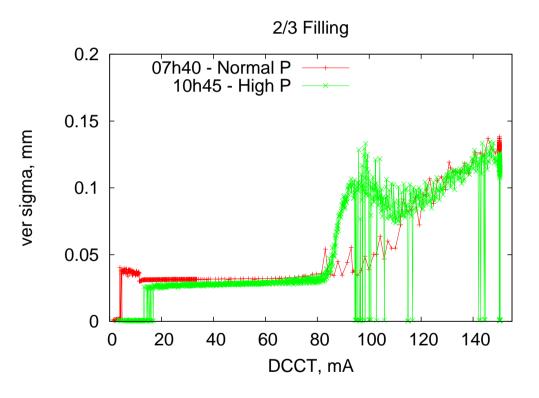

(Data from 6/3/2017)

- RGA data showed peaks at A=52 and A=80, likely due to desorption produced by Macor rings
- CLIC SL removed to guarantee operation

125 mA


135 mA

Controlled pressure bump


- Switch off Ion Pumps in one sector (out of 16).
- NEG pumping on → pressure increase ~1 order of magnitude in the Cell
- Check instability thresholds w. & w.o. pressure bumps

Controlled pressure bump

→ Beam size increase with increasing current with & w.o. pressure bump

- Xi = (1,2), threshold ~80mA for both cases
- But for normal pressure, the emittance increase is much violent.
 Co-existance of RW and Ions?
- At ~120mA, beam size follows the same trend as the case with normal P (larger Nb, ions "untrapped"?)
- Further studies going-on

OUTLINE

- 1. Beam Lifetime
 - a) Theoretical Equations
 - b) Impact on current Light Sources
- 2. Ion Instabilities
 - a) Analytical Equations
 - b) Observations in Light Sources

3. Conclusions

U. Iriso ESLS XXIII Nov. 2015

CONCLUSIONS

As for the lifetime...

- Lifetime in LS is limited by Touscheck effect for machines with doses >100 A*h
- Gas lifetime (elastic and inelastic) ~100h, while Touscheck lifetime ~20h.
- Gas lifetime only relevant in commissioning periods, or after installation of new components
- As a rule of thumb, need in ~100A*h to recover P<1e-9mbar (0.75nTorr)

CONCLUSIONS

As for the ion instabilities...

- Ion trapping condition is easily fulfill in LS. However, observations of ion instabilities are rare due to a very good vacuum conditions (Pavg < 5e-10mbar).
- Ion instabilities are only relevant in commissioning periods or after installation of new components in the vacuum chamber
- FBII have only seen in artificially bad vacuum conditions (injecting Ar gas) and/or switching off Ion Pumps to bring P>10nTorr
- Ion instabilities may co-exist with other instabilities (RW), and active feedback may effectively damp them (CESR) or not (Soleil)
- Soleil is (so far) the only machine whose operation is limited by ion instabilities (FBII).
- Simulation codes exist (FASTION & PyHeadtail), but more benchmarking is appreciated

<u>Acknowledgements</u>

Many colleagues from ALBA and other labs contributed to this talk:

M. Alvarez, T. Guenzel, Z. Marti, R. Monge (ALBA)

I.Martin, M.Cox (Diamond)

N.Carmignani (ESRF)

X. Nuel (Soleil)

J. Sundberg (Max-IV)

G. Rumolo (CERN)

Extra slides

http://inspirehep.net/record/846682/files/PhysRevSTAB.12.pdf

S.C. Leeman, Phys. Rev. ST Accel. Beams 12, 120701 (2009)

TABLE VII. Contributions to the total MAX IV 3 GeV storage-ring lifetime τ . The results have been calculated for a "worst-case scenario": four PMDWs and ten IVUs are installed in the storage ring while the total applied rf voltage is 1.5 MV which corresponds to an rf acceptance of only $\delta_{rf} = 4.0\%$.

	τ [h]
Elastic gas scattering	25.4
Inelastic gas scattering	53.1
Touschek scattering (with Landau cavities)	25.5
Total	10.3

MACOR® Machinable Glass Ceramic

- · is MACHINABLE with ordinary metal working tools
- allows FAST TURNAROUND, no post firing required
- holds TIGHT TOLERANCES, up to .ooo5"
- withstands HIGH TEMPERATURE, up to 1000°C (no load)
- · is CLEAN, no outgasing and zero porosity

Composition

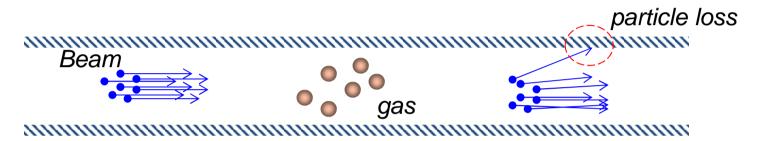
MACOR Machinable Glass Ceramic is a white, odorless, porcelain-like (in appearance) material composed of approximately 55% fluorophlogopite mica and 45% borosilicate glass. It has no known toxic effects; however, the dust created in machining can be an irritant. This irritation can be avoided by good housekeeping and appropriate machining techniques. The material contains the following compounds:

	Approximate Weight %
Silicon - SiO ₂	46%
Magnesium - MgO	17%
Aluminum - Al ₂ O ₃	16%
Potassium - K ₂ O	10%
Boron - B ₂ O ₃	7%
Fluorine - F	4%

Fast Beam Ion Instability - FBII

- Analytical model available*
 - Instability rise time equations, with & w.o. ion freq. spread along s

$$\frac{1}{\tau_F} = \frac{4d\sigma_{ion}\beta_y N_b^{3/2} n_b^2 r_p^{1/2} r_e s_b^{1/2} c}{3\sqrt{3}\gamma A^{1/2} \sigma_y^{3/2} (\sigma_x + \sigma_y)^{3/2}}$$


Lower ε = faster instability

Raubenheimer *et al.* Phys. Rev. E 52, 5, 5487, Stupakov *et al.* Phys. Rev. E 52, 5, 5499

Elastic Gas Scattering

Deflections caused by the **electromagnetic force** of the residual gas atoms. It can be due either by electrons or the nuclei (but the e-part is usually negligible for current LS)

Simplified Eqs:

$$\sigma_{el}(s) = 2\pi \frac{\beta_{y}(s)}{J_{y,\text{max}}} \left(\frac{Zr_{0}}{\gamma}\right)^{2}$$

$$\sigma_{el}(s) = 2\pi \frac{\beta_{y}(s)}{J_{y,\text{max}}} \left(\frac{Zr_{0}}{\gamma}\right)^{2} \qquad \tau_{el}^{-1} = \frac{c\beta}{kT} \langle P(s)\sigma_{el}(s) \rangle$$

Basic dependencies:

1. Number of residual particles (pressure):

2. Particle Charge:

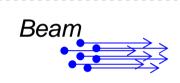
 $Z\uparrow \rightarrow \tau \downarrow$

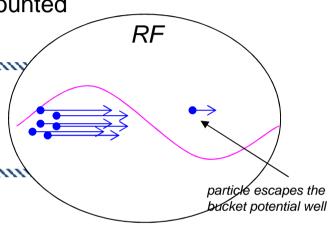
3. Beam energy:

4. Beta function.

 $\beta \uparrow \rightarrow \tau \downarrow$

5. Beam size:


 $\sigma_v \uparrow \rightarrow \tau \uparrow$


Inelastic Gas Scattering

Energy loss caused by **radiation emission (mostly)** at the vicinity of the gas atoms.

In this case, electron and nuclei contributions are accounted

Simplified Eqs:

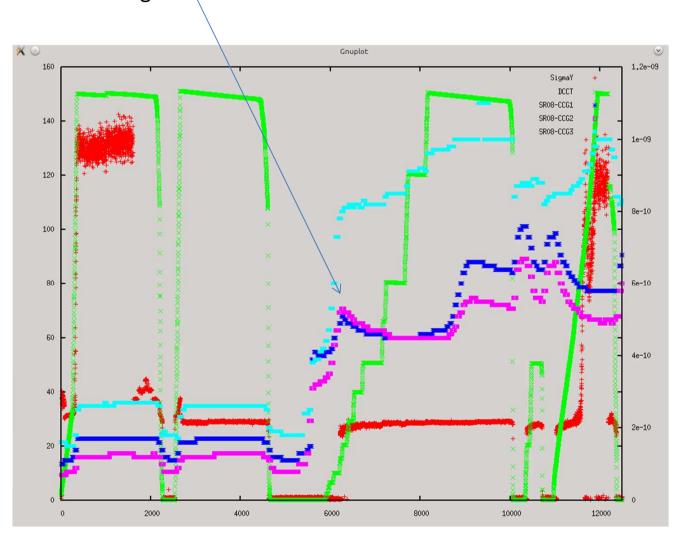
$$\sigma_{in}(s) = 4\alpha r_0^2 \left\{ \left[\frac{4}{3} (\delta_{acc}(s) - \ln(\delta_{acc}(s))) + \frac{\delta_{acc}^2(s)}{2} \right] F(Z) + \frac{Z(Z+1)}{9} (\delta_{acc}(s) - \ln(\delta_{acc}(s))) \right\}$$

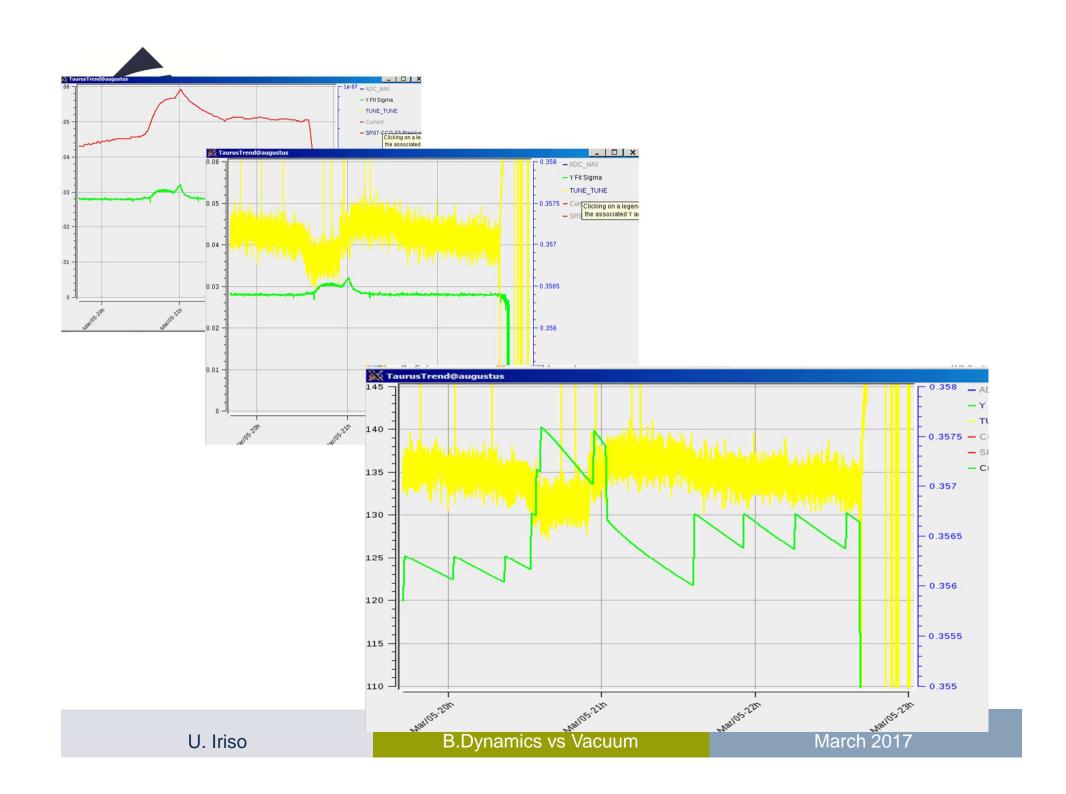
$$F(Z) = Z^2 \ln\left(\frac{183}{Z^{1/3}} \right) + Z \ln\left(\frac{1194}{Z^{1/3}} \right)$$

$$\tau_{in}^{-1} = \frac{c\beta}{kT} \langle P(s)\sigma_{in}(s) \rangle$$

Basic dependencies:

- 1. Number of rest gas atoms:
- 2. Charge of every particle:
- 3. RF acceptance.


$$P \uparrow \rightarrow \tau \downarrow$$


$$Z \uparrow \rightarrow \tau \downarrow$$

$$\delta \uparrow \rightarrow \tau \uparrow$$

Only SR08-CCG3 behaves "as expected" in the whole range.

For CCG1 and 2, after switching off certain pumps, there is a point in which both decrease even though the current increases: this (may) mean that after a certain P, you start the formation of a significant amount of gas ionization (or e-) which affects the pressure readings.

