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A Lifetime: Particle Loss in LS

ALBA

t PP, or 3

%

N Physical limitation

Some effect

X, y or ct

Main Lifetime contributors:

1. Gas Lifetime:
Interactions with residual gas nucleus or electrons (elastic or inelastic)
2. Touschek effect:
Interactions among beam particles with energy transfer.
3. Quantum Lifetime:
Emission of radiation quanta when particles are close to the aperture
limitations. Usually negligible, since it is ~1e5h or more.

U. Iriso B.Dynamics vs Vacuum March 2017




A Elastic Gas Scattering

ALBA

Deflections caused by the electrical force of the residual gas atoms
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1 - 2nr2eZ? (P, - By,)

~

Touclei—clastic ~ kBT7?  A? Note for LS, e-elast ~ [2-3]
orders of magnitude larger

Simplified Eqs™:

1 _2mrlcPZ 1

Telectron—elast k B TAI Oncc

* Number of residual particles (pressure): P1—1]|
» Particle Charge: Z1—T]
» Beta function. BT —1)
 Vacuum chamber: Art—T17
 Beam energy: vy —17
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A Inelastic Gas Scattering

ALBA

Energy loss caused by radiation emission (mostly) at the
vicinity of the gas atoms.

particle escapes the
ot potential well

AR ALLALLLLLLLLLLL LR LA LAL LA L R R R R N

Beam . o ©
L = o (%)
O—g— o
o GJas
B R i B B B B A
Simplified Eqs™:
| 1 JAreePZP4, (183N (1) 5 Both shall be accounted for LS
| Thuclei—inelast 137kBT 3 b 5acc 8
1 4ricPZ 4 2.5 1 5
Telectron—inelast - 137LBT§IH (Ta.cc - 14) lln (dacc) - g]
1. Number of residual particles (pressure): P1o1]
2. Charge of every particle: Z1—-T1]
3. RF acceptance. O T—T1
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PN Touscheck Lifetime (l)

ALBA

« Limiting effect in LS (although not in the scope of this workshop)

» Due to energy exchange between particles within the bunch, which can bring
the particles out of the energy acceptance

* |tis not exponential, but assymptotic:

aN(t
O-ang ——— =N
* T complex expression*, but its main dependencies:
Ty X VEVT: 53 =>» Product 1% 1, =ct , widely used in LS (instead of 1)

Ib acc

1. Vge 1— RF acceptance O T—T1

2. Beam density (coupling, bunch length). pt—T1]

3. Beam bunch intensity: l, T—1]

*See Piwinsky Equation, Chao’s book
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AL Lifetime in LS

ALBA

* Lifetime in LS is dominated by Touscheck effect, except in MAX-IV prediction@500mA

e @Gas lifetime (including elastic & inelastic) only important at early commissioning
phases or during installation of new IDs

400
350 -
m Total
300 - Soleil: X.N. Gavalda, Phd Thesis
m Touscheck Diamond: I. Martin, priv. communications
ESRF: N. Carmignani, priv. communications
N .
) 250 u Gas MAX-IV: S.C. Leeman, PRST-AB 12, 120701
_g 200 (2009) — 500mA
7]
=
- 150
100
50
0
ALBA Soleil Diamond ESRF ESRF-Il  Max-IV
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AL Gas Lifetime in LS: commissioning

ALBA

* Rule of thumb: Gas lifetime ~100h, when P-avg<le-9, which is usually
achieved after ~100 A*h
e At ALBA, this was achieved after ~¥6 months of operation

—
<
£ 1E-94
§ 8 ; 39
£ e |
® g
©
o
% £
a g
3 1E10 —m—ALBA
o a2 =
1E-10 4l o ==t Diamond
] ~ :' s S0leil
> a0
a e i A SP
L
o a e=p=MAXIV
3 3 1e11 | = ——sts
s 3 : N
° :
F - =
1E-11 Lyrrrvry —— T ————rrr
0.01 0.1 1E12
0.1 1 10 100
Accumulated beam dose (A.h) Auciissillanedt dose (AR]
* ALBA: Raguel Monge, privet communication.
* Diamond: M P Cox et al, C: r ing of the di light source storage ring vacuum system, Journal of Physics: Conference Series 100 (2008) 092011
D E : f I d I PAC 1 1 * Soleil: J.C.Besson, etal COMMISSIONING & OPERATION OF SOLEIL, WAO 2007. P$I - Scientific and Technical Report 2003 / Volume VI
. I n e ) * SLS: L. Schulz et al, STATUS REPORT OF THE SLS STORAGE RING VACUUM SYSTEM: EXPERIENCE AFTER TWO YEARS OF OPERATION

* ASP:E. Al-Dmour, VACUUM PERFORMANCE IN THE MOST RECENT THIRD GENERATION SYNCHROTRON LIGHT SOURCES, EPACOS.

E. Al-Dmour, XXIV SLS Workshop, 2016
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AL Installation of new components

ALBA

Example: Complete Cell exchange in Diamond

DDBA cell installed Nov 2016 Beam current x lifetime vs beam dose

102 T T T T T T T T T g T hh
a 1Beam x Lifet
| sttaposion Courtesy of M.Cox and |I.
Lifetime Product estabilized at ~50A*h | | | I|J,,/ Martin (Diamond)
0'F " DDBA cell installed Nov 2016 Pressure / beam current vs beam dose
B 3 R R e L L I T e R TR A s S ] R e e R AL 2 : BEY |
| ]
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AL Installation of new components

ALBA

Example: New Insertion Device (Loreas) @ALBA

S T _ N [ S - T * ~3 weeks to decrease pressure
1L o : .o hel Ll L | Lifetime - .
reos [~ O EmO | ERRAERE || SR R s lorder of magnitude
1k - TURITINE 1 I . . .
W 1O 20 ' : ' . » ~2 weeks to stabilize lifetime
el ; | I
] e : | (from 18h to 24h)
5¢-09 || % f ! ' i
] ﬁ . e Accumulated Dose: 80A*h
409 - - i :—15
- Pressure
Al 10
29_09_3 . ! : Loreas Conditioning
- _: 7 e Y ;s:..": da}ﬁ .
M T T T T T T T E 1e-09 | °
& & & & & & & A s
0
< 3 weeks > E
o 1e10¢}
B
R]
©
g 1e-11
=
1e_12 i A bk aasl i i i il i i i aaal i i B

0.01 0.1 1 10 100
dose, A*h
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A Lifetime Calculator GUI

ALBA

e Used at ALBA Control Room to crosscheck machine performance
* P@CCG, B, functions, €, cross sections, etc calculated on-line --> also Ty, & Tryyscheck

Xy’

Example during conditioning of new vac. chamber

Machine Vaioes: 8 Cabcutared Life Tone vz Meas Life Tene Trend

e Lles 85h

T

e e— 1 GUI-Simple View

-[Touscheckm30h

Carcutreme [ o
cactouscnartrenme [ " i
. — —“_w_’““m | —1 Pressure™~[20- 6]e-O9mbar
TMeasured 225h

20 AT O
NS T ‘
n
o I | 1 | | ]
T T T T T T T T
& 5 e i o S i i T

VAR A A P A calculated

~23h

Developed by M.Alvarez
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A Lifetime Calculator GUI

ALBA

e Used at ALBA Control Room to crosscheck machine performance
* P@CCG, B, functions, €, cross sections, etc calculated on-line --> also Ty, & Tryyscheck

Xy’

GUI — Expert View: allows you to control/measure all lifetime related params

Di Gas Life Time
=%  LoadPerspectives. » 500 22,000 - M
»s - - CalcGasLi
450 ~ Tee
N 21,000
u-as:n:::-‘ Tr— 400 - Tei
o p— | 350 20,000 — Tne
CalcProduct — math
caLtenimeenor [ 300 Tl'll
o — 19,000
250
DiLife Time Companents )53 200 18,000
Te-elastic I p— 150
T_lg-inelastic \\\m =: 100 17,000
n-elastic ol ——————
.. . i 50 16.000
n-lnelaStIC CalcTouschekLtetime  [NNNSOSH
SE— SR
P R RN G N
Touscheck params P ——— o N |
v I e e Developed by M.Alvarez
PinholeXFitConvergence |00 "
PinhoteYFitComvergence  [IIIEOE0
PinholeFitCanverged @
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A Controlled pressure bump

ALBA

e Experiment goal: change gas lifetime w.o. varying Touscheck
e Switch off lon Pumps in one sector (out of 16).
* NEG pumping on = pressure increase ~1 order of magnitude in the Cell

18 ] ,

I

1
wfo P-hump

wi P-bump ]

Gev:

| n .~| ; J i | I r t"..‘?f%
1"'1' P[‘ ml u‘hil" 1[‘1 1

200 230

WygT|
S0

y T A l
Hlmlﬂ uf” I

100

s-position [m]
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AL

ALBA

Controlled pressure bump

Lifetime comparison at different beam currents

Lifetime [h)

140

E
.| A | At 50mA, the lifetime difference is

only 10% .
100 X . .
— At 150mA, the differences are barely
e gas hietime . . . .
Tous. lifetime noticeable, since Touscheck lifetime
s0 F gas lifetime w/ P-hump Il dominates
Tous. lifetime w/ P-bump
©  meas lifetime

o 0 meas lifetime w/ P-bump
Bor © .

=]

8
4a0r =] -
%
2
ZU 1 1 1 1 1
40 60 ao 100 120 140 160
heam current [ma)]
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OUTLINE

2. lon Instabilities

U. Iriso

a) Analytical Description
b) Observations in Light Sources
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A lon Instabilities in LS

ALBA

See G. Rumolo and R.
Nagaoka talks

- Rest gas ionization produced by e-beam generates ions inside vac. chamber

- lons are heavy particles and they usually feel only a sequence of attractive kicks from
the bunches, which keep them confined near the beam core

- If the ion trapping condition is fulfilled, the ion remains oscillating around the beam

- The lon Instabilities can be either:
- “lon Trapping Instability” (ITl): multi-turn ion accumulation that degrades beam
quality (cured typically with abort gap)

- “Fast Beam lon Instability” (FBII), the ion production & accumulation occur
within one turn, affecting mainly last bunches in the train.

- Main consequences: emittance growth, tune shift, pressure rise...
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< lon Instability: ion generation

ALBA

- Rest gas ionization produced by e-beam generates ions inside vac. chamber

SRS . . | o COmolecules
¢ ° L .l « CO"ions
2
» Scattering ionization (depends on cross section 0)
N N
A= —2 Z P,o, ~20 ions/bunch/m (ALBA, P=1pbar, 0,,, = 2MB - CO)
kpT

* Field ionization could also happen above a certain threshold, but negligible in
current LS — may be relevant for CLIC Linacs
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< lon Instability: Trapping Condition

ALBA

2Nb'r' C G. Rumolo -“Two stream
— P (x— <x>) = —kr(x— <x>) Instabilities” — USPAS
Aoy (oy + 0y)

Az =

lon of mass A

Kick from the passing bunch

A

(-0 ()

Transport through the drift
space between bunches

Bunch i+1
~
-
Bunch i
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< lon Instability: Trapping Condition

ALBA

lon Motion easily expressed in matrix notation:
Tit1 1 — kT, T, x; x;
pr— p— A .
Tit1 —kr 1 T T

Stability if Tr(A) < 2:

Ngr,s .
Ao > Bp°B - Assumed Gaussian beams
it 26, (0y + 0y) i i |
y\Ox y - lons with atomic mass > A_,;, are trapped!

05 ﬂ Il | 1 || b A ALBA @150mA:
| ( / |

\i | - Allions can be trapped!!

- It does not affect ALBA due to use of abort gaps
and low pressure (~1e-10mbar)

- Dependence on lattice position through (g,, 0,)

vynamics vs Vacuum March 2017
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< lon Instability: Trapping Condition

ALBA

lon Motion easily expressed in matrix notation:

Tit1 1 — kT, T, x; x;
—A.

Tit1 —kr 1 T T

Stability if Tr(A) < 2:

Ngr,s .
Ao > Bp°B - Assumed Gaussian beams
crit 2 . .
0y (0x + 0y) - lons with atomic mass > A_;, are trapped!
200 200
e n =104 / e =104
w 150 e = 208 w 150 e— 1= 208
g o) || 8 R. Nagaoka talk
E 100 E 100
S 5o S 5o - For low-e rings, A_,;. increases
0 100 200 300 400 0 100 200 300 400
Beam current [mA] Beam current [mA]

Calculated with & =4 nm (left) and 0.2
SOLEIL parameters (1% coupling)

nm (right) with
S Vs Vacuum March 2017



A lon Instability: Osc. Frequency

2Ny
Aoy(ogy + 0y)

From AL = — (zi —(x)) and %x=Ax/Ty

We get the ion oscillation frquency:

2Ng c 1,

. observable with spectrun analyser
ron Aay(ax + O'y)TB

(,()2

ALBA Case @150mA in one sector:

- Inversely proportional to A
- Between ~[10 — 300MHz]
- Also depends on s-position




Aﬁ\A lon Instabilities: tune shift

Induced tune shift due to

Ipren Byds
AVﬁ = 4 3 f‘ .
focusing force: 2rec(Pc)’yBy J 0y(0x+0y)
rA.C<pB, >
An easier simplification from above equationis: Av_ '

Y A
4/7/0'}_ (o, + O'y)
Note:

- positive tune shift
- For FBII, A, depends on the bunch #, so the tune shift depends on the bunch 3

4.0E-04
3.5E-04 -
3.0E-04 - .
£ 25604 - CO ions; P=1pbar; o,,,=2MB
= . : .
z 5 OE.04 Nominal operation conditions
2 1.5E-04 -
1.0E-04 - Tune shift small, but measurable
5.0E-05 l
0.0E+00 *4. T T T T
v > N N Q
D o(\ O\Q/ :g‘ QS _*_,\
TS ° e @
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— The ions accumulate along one bunch train
— Head and tail of the train are coupled through the ions

— Coupled motion between ions & e-beam: ions “keep memory” of the offset of the
generating bunch and transfer this information to the following bunches.

— The driven oscillation is expected to be at a main frequency related to the ion
oscillation frequency.

See analytical models at: | Raubenheimer et al. Phys. Rev. E 52, 5, 5487,
Stupakov et al. Phys. Rev. E 52, 5, 5499
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AL Fast Beam lon Instability - FBII

ALBA

Analytical instability models* allow to estimate rise times:

AT
yo, (O’_r e, )

—_—— = —ﬂ_‘,k_\, With Ky the focusing strength k_\' =
d .

e This gives rise times ~2us range at ALBA, although coherence effects along the
ring can increase this rise times by 1-2 orders of magnitude
e Each case needs a careful analysis

e Computer simulation codes (FASTION ad PyHEADTAIL**) can be used to
carefully calculate these rise times.

*Raubenheimer et al. Phys. Rev. E 52, 5, 5487,
Stupakov et al. Phys. Rev. E 52, 5, 5499

**|L.Mether, “Numerical model of FBII”, Proc. of HB2016
A.Chaterjee et al, PRST-AB 18 064402 (2015)

U. Iriso B.Dynamics vs Vacuum March 2017



AL lon Instabilities Observations

ALBA

* Fast Beam lon Instabilities observed in LS are produced artificially induced by
injecting gas into the vacuum chamber
e See examples at ALS & CESR

ALS experiment*:
- all lon Pumps off
- Inject He: avg P from 0.25 to 80 nTorr

! ! 5 ! ! oo
i | © Headded o) o lm
2°90

: -® |
= mmmalpms.m am‘“ a 0.0Co® o :

13

%
58"

Vertical RMS size (um)
2

ofpbfE

I Bx 58E5gtg505 |
A§I;:xll;I¥;;;;31353f;;,,‘,;;x x3%555" 23
Number bunches

*J Byrd et al, PRL 79, 1 (1997)

U. Iriso B.Dynamics vs Vacuum March 2017




AL lon Instabilities Observations

ALBA

* Fast Beam lon Instabilities observed in LS are produced artificially induced by

injecting gas into the vacuum chamber
e See examples at ALS & CESR

CESR experiment*:
- Localized pressure bump of ~10m
Inject Ar and Kr: from 1 to 25 nTorr

Ar 10 nTorr Ar 15 nTorr

 Beam Size observation

 BBB feedback can damp
instability

e QObservations match well
with simulations using
FASTION

*A.Chaterjee et al, PRST-AB 18 064402 (2015)
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A,;A lon Instabilities Observations

A L

Beam Spectra and Pressure Rise in Soleil

R. Nagaoka, IPAC’10

* Soleil is so far the only LS affected by ions during operation
* The beam spectrum for ions dominated instabilities show a distinct
pattern wrt usual RW spectrum

Begn: 0080524 1500000 End> 1009-05-25 0000:00.0

= Vacuum Beam c¢curren
|; 11 170 L 1) A N A - pressure /
] e e e e e s S ; | ~ A g i
Channel Power: -105.26 dBm | [iooed f e f
Denmitys <149 24 Pen M O t f \‘ ! —% Y

To prevent this instability, Soleil runs with full filling pattern rather than partial filling (lower I;)
This prevents pressure to rise (due to thermal outgassing), and trigger instability

=>» Not lon Trapping, but FBII

1 o1 A0

77777 mEo T30 =m T>aN00 E=E . - @ oEEm Zmom
ST ANSMITAL C.PTTmastaad oy 1) TP AR COTMITAL C-PTY M aninad (Y () © ANBCOZIVUCALCP Yarwarieed (1)
—+—ANG-DOOAY SRLG-) marvrr 1¥13 —— KB COIMITALC-PI{ fmaaniniadys) —-'—amuavmum Jrrwariveed (113
ANS.CORNVZRLC ), Simeanvieed (V1) BB CO/WCALE-PI{ nnaniiad ] INB-LOEVVCALL-?|. Urrwariresd (1)
e ANS-COBAESRLO-?] Simeartead (Y1) —— KB CAIVCALL-PL aeanrrod(y-) ——Amsimwvl “rreariead [74)
—— ANG-CI WV ERLC-P1 Smeariresd (Y1) - ANS CTIMICALE-PT1 M aniisd(Ys) ARECIAVICALC-?1meantead (1)
o ANG-C SHVCALC-Y1 fimeanviesd (Y1) AN CTIMICALL-PL Mmeanitndi(y 1) ~—e—ANBOGICURRENT_INTERLI CX_CTRUGUMentreal (+2)
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AL lon Instabilities Observations

ALBA

Installation of CLIC SL Kicker @ALBA "] | T
(Data from 6/3/2017)
While conditioning the new vacuum e e o e e o 15

chamber, injecting from 125mA to o — | |
135mA produced a: ] '

-pressure rise: ~3e-8mbar
-beam blow up (by 20%)

-tune shift of 2e-4

-BBB feedback could not damp it

Compatible with ion instabilities in this
case produced by larger atomic masses _
(see next)
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AL lon Instabilities Observations

ALBA

Installation of CLIC SL Kicker @ALBA 125 mA

EasyView Analog Mode
[ Wass 52

(Data from 6/3/2017)

(#ags 1.78 !
11070 | 8.69e:009

- RGA data showed peaks at A=52 . ‘ O

and A=80, likely due to desorption "
produced by Macor rings

o™

= CLIC SL removed to guara ntee 5” .1[I . 15 2[!. .25 30 . 35 40 45 . 50 55. .BD . 65 . TEI. 75 8'3. 85 Qﬂ‘ . 95 1I]U§
operation

EasyView Analog Mode
Mass 5203 Mass 30061
5.36e-010 3888011 |
1x10
CMass 178 TR
. o 17.9
110 L e | 102-008 |
Wass 2784 | TP i
H Mazs of i
e ‘ l g e | 30sgans.
110 +Hi
110"
1x10
'
5 10 15 20 25 30 35 40 45 50 5] 60 65 70 75 80 85 a0 95 100
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/;A Controlled pressure bump

A L

e Switch off lon Pumps in one sector (out of 16).
* NEG pumping on = pressure increase ~1 order of magnitude in the Cell
e Check instability thresholds w. & w.o. pressure bumps

| 1
wio P-bump

wi P-bump ]

P [pbar]

Gt

IljmII I ‘rlll H | il

200 250

(/

A,

T LA
H ]l I l[ H II‘ ﬁ| l Il Yl :i |

0 a0 100

1pbar = 0.75nTorr
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A Controlled pressure bump

ALBA

=» Beam size increase with increasing current with & w.o. pressure bump

2/3 Filling
0.2 07h40 - Normal P ' ' e Xi=(1,2), threshold ~80mA for both
10h45 - HighP cases
0.15 | 1

e But for normal pressure, the
emittance increase is much violent.
Co-existance of RW and lons?

ver sigma, mm
o
=

it e At ~120mA, beam size follows the
T M‘ | same trend as the case with normal P

(larger Nb, ions “untrapped”?)

40 60 80 100 120 140
DCCT, mA

e Further studies going-on
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OUTLINE

3. Conclusions
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AL CONCLUSIONS

ALBA

As for the lifetime...

Lifetime in LS is limited by Touscheck effect for machines with doses >100 A*h
Gas lifetime (elastic and inelastic) ~100h, while Touscheck lifetime ~20h.

Gas lifetime only relevant in commissioning periods, or after installation of new
components

As a rule of thumb, need in “100A*h to recover P<le-9mbar (0.75nTorr)
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AL CONCLUSIONS

ALBA

As for the ion instabilities...

lon trapping condition is easily fulfill in LS. However, observations of ion instabilities are
rare due to a very good vacuum conditions (Pavg < 5e-10mbar) .

* |on instabilities are only relevant in commissioning periods or after installation of new
components in the vacuum chamber

* FBIl have only seen in artificially bad vacuum conditions (injecting Ar gas) and/or
switching off lon Pumps to bring P>10nTorr

e |on instabilities may co-exist with other instabilities (RW) , and active feedback may
effectively damp them (CESR) or not (Soleil)

e Soleil is (so far) the only machine whose operation is limited by ion instabilities (FBII).

e Simulation codes exist (FASTION & PyHeadtail), but more benchmarking is appreciated
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AL Extra slides

ALBA

http://inspirehep.net/record/846682/files/PhysRevSTAB.12.pdf
S.C. Leeman, Phys. Rev. ST Accel. Beams 12, 120701 (2009)

TABLE VII. Contributions to the total MAX IV 3 GeV
storage-ring lifetime 7. The results have been calculated for a
“worst-case scenario”: four PMDWs and ten IVUs are installed
in the storage ring while the total applied rf voltage is 1.5 MV
which corresponds to an rf acceptance of only & = 4.0%.

7 [h]
Elastic gas scattering 254
Inelastic gas scattering il
Touschek scattering (with Landau cavities) 25.5
Total 10.3

U. Iriso B.Dynamics vs Vacuum March 2017



AL

ALBA

MACOR®

Machinable Glass Ceramic

«is MACHINABLE with ordinary metal working tools

« allows FAST TURNAROUND, no post firing required

» holds TIGHT TOLERANCES, up to .0005"

« withstands HIGH TEMPERATURE, up to 1000°C (no load)

+is CLEAN, no outgasing and zero porosity Com position

MACOR Machinable Glass Ceramic is a white, odorless,
porcelain-like (in appearance) material composed of approximately
55% fluorophlogopite mica and 45% borosilicate glass. It has no
known toxic effects; however, the dust created in machining can be
an irritant. This irritation can be avoided by good housckeeping
and appropriate machining techniques. The material contains the

following compounds:
Weight %
Silicon - Si0, 46%
Magnesium - MgO 17%
Aluminum - ALO; 16%
Potassium - K;O 10%
Boron - BzO; 7%

Fluorine - F 4%

U. Iriso B.Dynamics I



AL Fast Beam lon Instability - FBII

ALBA

e Analytical model available*
— Instability rise time equations, with & w.o. ion freq. spread along s

| 4dGip ﬁyNg / 2ngr,',/ 2r,g.s‘,;/ %

TF 3\/§yA'/2O'_3/2(O'x + oy)3/2 Lower € = faster instability

Raubenheimer et al. Phys. Rev. E 52, 5, 5487,
Stupakov et al. Phys. Rev. E 52, 5, 5499
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A Elastic Gas Scattering

ALBA

Deflections caused by the electromagnetic force of the residual gas atoms.
It can be due either by electrons or the nuclei (but the e- part is usually
negligible for current LS)

___particle loss
7/
N\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\;\ \\‘\\\\\\\\m
/

Beam o © >
e %0 gas pa =

R N NN NN N NN DD

implified Eqgs: i
Simplified Eq o (9)=27 B,(s) (Zroj Tel_l — % < P(S)O' o (S)>

Basic dependencies:

1. Number of residual particles (pressure): P1—1|
2. Particle Charge: Z1—-T]
3. Beam energy: vt —-11
4. Beta function. Bt —1)
5. Beam size: 0,1 —11
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A Inelastic Gas Scattering

ALBA

Energy loss caused by radiation emission (mostly) at the
vicinity of the gas atoms.
In this case, electron and nuclei contributions are accounted

i o P R P o o P i P o i s B M

Beain._. o © °
%* o
o gas
Pl T Tt T T T T e T T T e T T e N B T B e T T i e e e i T e T e e B P B B T B T e P i B N B S Coscanes e
Slmpllfled EC]SZ buCket potential well
(o= §06) -l P02 ) 2D 9 e (9) o
F(z)=22mn 183 |4 71 1194 Ti?ll = <P(S)0-in(s)>
ety KT
Basic dependencies:
1. Number of rest gas atoms: P1-1]
2. Charge of every particle: Z1—-1]
3. RF acceptance. O )
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Only SR08-CCG3 behaves “as expected” in the whole range.

For CCG1 and 2, after switching off certain pumps, there is a point in which both
decrease even though the current increases: this (may) mean that after a certain P,
you start the formation of a significant amount of gas ionization (or e-) which affects
the pressure readings.

A Gnuplot "2
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