XFEL impedance budget, energy losses/spread and

released technical solutions to minimize the effects

European XFEL

FEL basics

before the undulator

bunch compression impedance budged

in the undulator

energy loss undulator chamber, intersection impedance budged geometric effects surface effects

summary

European XFEL

Fundamental FEL Equation

FEL resonance
$$\lambda_{\text{FEL}} = \frac{\lambda_{\text{u}}}{2\gamma^2} \left(1 + \frac{K^2}{2} \right)$$

but $\gamma = \gamma(s, S)$ with s = bunch coordinate S = beamline coordinate

f.i. $S \approx 2200$ m (start of SASE1)

SASE and Seeding

Before the Undulator

accelerator and bunch compression system

Before the Undulator: Impedance Budged

accelerator wakes for Q = 1nC

fast kicker (in beam distribution system)

ceramic pipe with thin metallic layer

In the Undulator

SASE1

beamline coordinate

example: LCLS

Undulator chamber

SASE1: L_{tot} = 225 m L_{act} = 35 × 4.96 m = 174 m

Intersection

European XFEL, Undulator chamber & Intersection

SASE1: L_{tot} = 225 m L_{act} = 35 × 4.96 m = 174 m

SASE1 undulator (one of 35 sections) for Q = 1nC, $I_{peak} = 5 \text{ kA}$

total energy spread (per section) $\approx 412 \text{ keV}$ elliptical pipe $\rightarrow 274 \text{ keV}$ (pure surface effects)surface effects $\rightarrow 331 \text{ keV}$ geometric effects $\rightarrow 80.5 \text{ keV}$

- shape: large cross-section (mirror currents & pumping) + small gap (undulator)
 → elliptical pipe
- material: frequency dependent conductivity + anomalous skin effect
 → aluminum profile
- more surface effects: roughness + oxide layer
 - \rightarrow very tight tolerances 300 nm + 5 nm in undulators 1000 nm + 5 nm in BC chambers

 $\begin{cases} \approx 75 \% \\ \approx 25 \% \\ \text{of surface impedance} \end{cases}$

roughness

AFM treatment on a 5 m long test chamber measurement preparation and equipment

Mitutoyo (Surftest SJ-210)

result of the AFM treatment on a 5 m long test chamber polished with unidirectional flow results show that it is essential to polish in both directions

Bild 8: Trend und Kennlinien der Ra-Werte unter Ausschluß von Extremwerten

geometric effects

bellows (pipe with gaps)

a good survey and alignment concept is essential due to the small aperture of the beam pipe!

beam position monitor

optimize geometric effects

Summary

challenging beam dynamics before and in the undulator

high peak current low transverse emittance low correlated energy spread

before the undulator: about 2000 components, •, major sources are

cavities collimators warm pipes (L3 to undulator) fast kickers (beam distribution system)

- undulator and intersections: geometric wakes \rightarrow optimized geometry, \bullet surface effects \rightarrow material, roughness, oxide layers
- carful design of all geometric details: flanges, pumps, steps, diagnostics, ...

my special thank to	Igor Zagorodnov	
	Guangjao Feng	
	Sven Lederer	
	Torsten Wohlenberg	for their support and material

Bunch Compression

Before the Undulator: Impedance Budged

accelerator wakes for Q = 1nC

Impedance Budget (list of elements)

El.type	Num.	Loss (kV/nC)	% Spread (kV/nC)		%	Peak (kV/nC)	%
BPMF	4	4.075E+01	0	1.858E+01	0	5.804E+01	0
COL	7	6.725E+03	19	3.373E+03	22	1.058E+04	21
кіск	3	3.645E+03	10	1.459E+03	9	5.283E+03	10
PIP20	1	5.116E+03	14	3.661E+03 24		8.959E+03	18
PUMCL	78	5.605E+02	2	2.363E+02	2.363E+02 2 7.		2
CAV	808	1.481E+04	42	8.842E+03	8.842E+03 57 2.814E+0		56
CAV3	8	8.084E+01	0	3.010E+01	3.010E+01 0 1.117E+0		0
FLANG	500	1.330E+03	4	5.610E+02	4 1.886E+03		4
TDS	8	1.507E+03	4	7.348E+02	5 2.174E+03		4
OTRB	8	1.584E+02	0	7.251E+01	0	2.254E+02	0
STEP1	1	3.010E+00	0	5.969E-01	0	3.441E+00	0
BPMA	107	5.654E+02	2	2.896E+02	2	8.670E+02	2
OTRA	12	3.078E+02	1	1.274E+02	1 4.494E+02		1
врмс	56	4.431E+01	0	2.138E+01	0 6.805E+01		0
BPMR	26	2.993E+02	1	1.304E+02	1	4.501E+02	1
DCM	4	1.644E+01	0	7.479E+00	0	2.315E+01	0
врмв	27	5.744E-02	0	1.587E-01	0	6.023E-01	0
BAM	5	3.319E+00	0	1.494E+00	0 4.768E+00		0
TORA	3	3.147E+01	0	1.609E+01 0 4.763E		4.763E+01	0
TORAO	6	1.856E+02	1	7.684E+01	0	2.700E+02	1
		3.530E+04	100 1.540E+04		100	5.037E+04	100
				$\rightarrow 1!$	5.4	MeV	

Before the Undulator: Impedance Budged accelerator wakes for Q = 250 pC

El.type	Num.	Loss (kV/nC)	% Sp	read (kV / nC)	%	Peak (kV/nC)	%
BPMF	4	6.150E+01	0	2.891E+01	0	0 8.933E+01	
COL	7	2.283E+04	32	1.022E+04	31	31 3.452E+04	
кіск	3	7.893E+03	11	3.100E+03	0E+03 9 1.052E+04		11
PIP20	1	1.652E+04	23	8.512E+03 26 2.730E+04		2.730E+04	27
PUMCL	78	1.103E+03	2	4.743E+02 1 1.574E+03		1.574E+03	2
CAV	808	1.574E+04	22	9.440E+03	29 2.987E+04		30
CAV3	8	9.280E+01	0	3.590E+01	0 1.316E+02		0
FLANG	500	2.619E+03	4	1.126E+03	3 3.736E+03		4
TDS	8	2.506E+03	4	1.229E+03	4	3.677E+03	4
OTRB	8	2.428E+02	0	1.137E+02	0	3.510E+02	0
STEP1	1	3.825E+00	0	6.815E-01	0	4.293E+00	0
BPMA	107	7.317E+02	1	4.231E+02	1	1.265E+03	1
OTRA	12	1.698E+02	0	8.118E+01	0 2.474E+02		0
BPMC	56	7.912E+01	0	4.531E+01	0	1.348E+02	0
BPMR	26	1.523E+02	0	7.506E+01	0	2.241E+02	0
DCM	4	2.533E+01	0	1.160E+01	0	3.612E+01	0
врмв	27	1.247E-01	0	1.976E-01	0	7.440E-01	0
BAM	5	4.474E+00	0	2.180E+00	0 6.820E+00		0
TORA	3	4.681E+01	0	2.515E+01	2.515E+01 0 7.275E+0		0
TORAO	6	1.107E+02	0	5.175E+01	0	1.598E+02	0
		7.063E+04	100	3.285E+04	100	1.000E+05	100

 \rightarrow 8.2 MeV

SASE1 undulator (one of 35 sections) for Q = 1nC, I_{peak} = 5 kA

N	element	geom loss	geom spread	loss	spread
		kV	kV	kV	kV
1	elliptical pipe	0	0	239	274
2	pump	4,4	4,5	9	10
3	absorber \rightarrow round transition	69	27	70	28
4	round pipe	0	0	22	32
5	below	24	9	25	10
6	BPM	42	17	70	34
7	below	24	9	25	10
8	round \rightarrow elliptical transition	36	14	36	14
		199.4	80.5	496	412

energy spread

