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1. Introduction

Goals and the target performance of LS (Light Source) storage rings:

Constant delivery of a high quality, intense and stable photon beam to a large number of
beamlines

Currently running 3rd generation LSs:

Many free straights for IDs (Insertion Devices). IDs and dipoles used for photon beamlines.

Ring magnet lattice elaborated to provide a low emittance electron beam with a large ratio (free
straight sections)/ circumference
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24 straights (4x12 m + 12x7 m + 8x 3.6 m) over 354 m of
29 beamlines (22 IDs + 7 dipoles) at SOLEIL circumference, i.e. 45% availability at SOLEIL, in a DB lattice
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High quality and intense photon beams: Often characterized in terms of

Photons

Brilliance =

Second -mrad? - mm?-0.1%BW

| : Beam current, &,: Transverse emittance

= Two major axis in increasing Brilliance:

1) Lowering of transverse beam emittance:

e Optimal ring structure : DBA, TBA lattice with many straight
sections, strong focusing everywhere, high number of
periodicity

e Chain of consequences:
Low emittance = Strong focusing = Smaller bore radii >
Narrower VC aperture > Higher impedance (Resistive-Wall
& Broadband) = Lower vacuum conductivity = Special
vacuum technology (NEG, ...)

e Presently a big global wave for 3GLS - DLSR (Diffraction
Limited Storage Rings or 4GLS)
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2) Raising beam intensity (single and multibunch) & its issues:

e Along with reduced VC aperture and lower beam emittance,
enhanced sensitivity to collective beam instability
(microwave, TMCI, headtail, resistive-wall, ...) and beam-
induced VC heating

e Enhanced SR (Synchrotron Radiation) power hitting and

heating VC (normally proportional to the total beam current) Melted RF finger at SOLEIL, Courtesy N. Béchu

e Enhanced Touschek scattering and IBS (Intra Beam
Scattering) + Reduced VC aperture = particle losses 2>
beam lifetime drops

e Enhanced beam-ion interactions and instabilities
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e Beam-ion interactions: lons are created due to collision of electrons with residual gases:
- lons trapped in electrons’ electro-static potential could render an electron beam unstable.
- For low-emittance rings, ions are less likely to be trapped due to higher critical mass.
- For modern and future rings storing a high intensity and low emittance beam, a “single pass”
interaction between the two beams may become strong enough to jeopardise the
performance.
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Beam pulsation observed at KEK-Photon
Factory due to trapped ions (S. Sakanaka,
OHO 1986)

e This type of two-beam interaction, named “Fast
Beam-lon Instability (FBII)” resembles “beam
breakup in linacs” and does not involve ion trapping,
and an ion clearing beam gap may not be helpful.

(Raubenheimer and Zimmermann, Phys. Rev. E52, 5487, 1995)

clearing beam™gap

Calculated with g, =4 nm (left) and 0.2 nm (right) with
SOLEIL parameters (1% coupling)

: relative to beam
:_ring position/time
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e Impact of low gap IDs on beam dynamics, vacuum and VCs:

- Vertically narrow flat geometry for chamber cross section = Source of large asymmetry in
beam dynamics between the two transverse planes

- Increased RW (Resistive-Wall) and geometric impedance due respectively to low-gap section
chambers and taper transitions

- In-vacuum undulators and wigglers (minimal gap ~5 mm)
- Development of variable tapers associates mechanical and beam dynamics challenges
- Vacuum conditioning of large volume objects not trivial
- Considered to be one of the likely sources for heat-induced FBII at SOLEIL

Low gap chamber in a
12 m long straight

section in SOLEIL
Standard chambers ong SS chambers Medium SS chambers
X=2x35mm X=2x28 mm X=2x23mm
Z=2x125mm Z=2x7 mm Z=2Xx5mm
70 90 :
= " ( 5:6 W i 1‘23 —
(€] (€] 5 ! - ] & -]
Cryogenic in-vacuum undulator S Lehgth =406 Lengti=56m
developed at SOLEIL Three type of vacuum chambers at SOLEIL
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3) Beam stability requirement in terms of;
- Intensity

- Position and beam sizes over both short and long period
Machine operation in its ideal (golden) machine setting
Excellent orbit correction system with reliable BPMs (positioning/thermal stability)
Excellent machine thermal stability
- Top-up is essential for both constant beam intensity and machine thermal stability

Even with top-up, always better to have good beam lifetime

- Need of Ultra-High Vacuum (UHV) with not too constrained VC apertures
= D gaps closed to small aperture = Beam injection losses, ID magnet damage,

- Importance of H/V scrapers and constant knowledge of limiting physical aperture in the ring

50 T T
. SR S
4) Delivery of different modes of operation I T
- Beam filling: Uniform, hybrid, 8-bunch, single bunch, ... 30(
- Different optics: Low-alpha, ...

T (hrs)

20} LE, 100mA/280
- Enhanced sensitivity to VC and vacuum related issues in
some modes

1/7 =1/7pp 4+ 1/7¢ * a3/ min(a3, y*)
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ag =4.11 mm
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Measurement of beam lifetime as a

function of the scraper position (Huang,
Corbette, SLAC-PUB-14397)
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2. Specific issues encountered and studied in present LS rings

e Piecewise 3D numerical evaluations of the vacuum chamber impedance

- Carried out by many labs (BESSY, ESRF, APS, SPring-8, SOLEIL, DIAMOND, NSLS-II, ALBA,
MAXIV, SIRIUS, ...) using 3D Electro-Magnetic field solvers such as CST-microwave studio,

GdfidL, ...

- Results are often used to simulate the beam instabilities

- In several cases, these studies allowed detecting beam dynamics/heating issues in advance
and giving feedback to improve the original vacuum component designs
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Impedance budget obtained for (the future machine) SIRIUS (left: longitudinal, right: horizontal) (F.-E. De Sa, LER2016)
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- For modern LS rings, the contribution of resistive-wall dominates due to the much reduced VC

aperture, and the imaginary part gets enhanced if NEG is in addition coated on the chambers
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2) Some examples of the impact of vacuum chamber impedance

e SOLEIL flange
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- Malfunctioning of BPM button electrodes encountered are likely due to the heating due to the
trapped mode at ~8 GHz. (R. Nagaoka et al., EPAC 2006, Edinburgh)
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e SOLEIL in-vacuum ID tapers
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In-vacuum taper structure: Initial
(above). Improved (below)
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Monitoring of heating in a taper with the 1° design (above) and
absence of heating with the improved design (below)

- Initial tapers creating a cavity structure when the ID gap was opened had a serious problem of
beam-induced heating > Had to be taken out and be replaced.

- New tapers greatly improved the heating issues. They could still occasionally exhibit heating
problems when their expected movements are affected by mechanical defects.
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3) Impact of NEG coating in LSs

e NEG coating, which turned out to be very effective in
pumping the residual gases without pumping ports, is more

and more used in ring-based LSs.

e SOLEIL is the 15t LS that has as much as nearly half of the

entire chamber NEG coated.

e Observation made at Elettra, however, had raised some

concerns on the impedance.
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E. Karantzoulis et al., PRSTAB 6, 030703

e Analytical studies made showed an increase in ImZ by a factor ~2, but had to assume high
resistivity & coating thickness to explain quantitatively the Elettra result
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e For future DLSRs, NEG coating is expected to be an indispensable technology.
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e At SOLEIL, the effect of NEG coating was also confirmed to contribute non-negligibly in the
incoherent tune shifts arising from VC cross section asymmetry:

= 0.006 Measurements
S 0005 +
< & 0.004 Calculation:
& .5 ' T - NEG coating (0.5 um and 1.0 um
— o 0003 + thickness)
= = . .
= = - Bunch lengthening with current
8 0.002 + not taken into account
s 0.001 + )
==
0 ' S ' ' ' Calculation: (P B lle et al.. PRAB
0 3 /'6 9 12 15 18 21 - NEG coating (0.5 um and 1.0 pm - brunelie et ai.,
Bunch current (mA) thickness) 19,044401 (2016))
Calculatior: - Bunch lengthening with current

taken into account

- NEG coating not taken into account
- Bunch lengtheningwith current taken into account

e Damages of cables etc. were found to arise from fluorescence X-rays due to NEG coated VCs at SOLEIL:

f—/A\
- ‘% Quadrupole vacuum
e ; chamber profile
/,

Aluminium transmission

xtupoles (downstream/upstream) i
(N. Hubert et al., “Radiation damages and characterization in the SOLEIL storage ring”, IBIC 2013)
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4) FBII arising from local out-gassing due to beam-induced heating of VCs:

e At SOLEIL, transverse bunch-by-bunch feedback is routinely used to suppress resistive-wall (RW) instability.

e However, depending upon the beam filling and intensity, beam-induced heating could trigger FBII via outgassing
and leads to total beam losses.

e Usually the beam is lost some 10 minutes after reaching the final current (500 mA)

e The above interval of time as well as the total beam loss due to FBIl remained as a big puzzle

No phase
correlation

araph du paquet choisi | M Graphs | rs.. | GTOTM| [ i- @

Experimental and numerical
analyses lead us to conclude
that over the time interval,
the local pressure keeps
rising up to the point when
feedback hits its limit and
becomes destructive

Measured beam loss at 500 mA P Simulation: RW with temporal “shaker” excitation at F,,
White: Beam, Red: TFBkick  ssturation (R. Nagaoka et al., TWIICE, SOLEIL 2014)
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3. Future trends and issues in DLSRs

1.0E-06
e A global wave today to construct (or re-

construct) ring-based LSs having the 1.0E-07 -
horizontal emittance ¢, by tens of factors
below the “nm-rad” range

SuperKEKB
°

1.0E-08 + = 8
ALSU® SLSII e

SOLEIL Y i ILCDR @

. . . 1.0E-09
Basic principle used:

Theoretical 2 3
(¢,) oc E°-60

Minimum

1.0E-10 +

H Emittance / gamma*2 (nm)

1.0E-11

E: Beam energy, & Bending angle s o 10000

Circumference (m)

- MBA (Multiple Bend Achromat) instead
of DBA, TBA Courtesy R. Bartolini

e Especially for machine “upgrades”,
the resultant ring configuration
tends to be extremely dense, and
keeping the original photon
sources becomes non-trivial

5 iy 4 II"‘ y e h ) f s y’.~- a7
m I Dipoles-quadrupoles |

Comparison between ESRF and ESRF-EBS, (M. Hahn, 3eme Rencontres
Nationales du Réseau Technologies du Vide, Oct. 2016)
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. Technical challenge: Magnets System

e In addition to the need of strong
Mechanical design final drawing phase quadru pOIES, sextu pOles, and
Wik i Quadrupole octupoles, non-standard magnets
« Large positioning pins for opening repeatability Around 52Tm""
. . - such as,
 Tight tolerances on pole profiles

» Prototypes to be delivered in the period

- Dipoles with transverse and/or

September 2014-Spring 2015 D¢ |Ongitudina| gradient

q —.‘D
- Gradient: 90 T/m D 5

- : - Antibends (outward dipolar

- Bore radius: 12.5 md A H ir H H
Rt . S deflection) and their integration in
- Power: 1-2 kW H Combined Dipole-Quadrupoles “Length 200mm

0.54T/34Tm" &0.43T/34 Tm' focusing quadrupoles

are found useful in further lowering &,
and/or gaining space

Gradient: 3500 Tm2
L)

Permanent magnet (Sm,Co,;) dipoles s

longitudinal gradient 0.16 — 0.65 T, magnetic gap 25 mm Gael Le Bec P
— 1.8 meters long, 5 modules

=
The European Synchrotron | ESRF

(from P. Raimondi, LERD2015, April 2015)

For ESRF-EBS, the imposed 11mm stay clear from pole to pole
for all magnets optimized for synchrotron radiation handling

(from P. Raimondi, LER2016, Oct. 2016)
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e Challenges on vacuum systems:

- VC designs compatible with magnet poles, photon extraction and beam stay clear conditions

- Integration of pumping ports, photon absorbers, collimators and crotches
- Detailed evaluation of vacuum profiles along the ring

- NEG coating must be a very helpful method for DLSRs with the given constraints above

e Challenges on beam dynamics:

- Beam injection and storage (off-axis, on-axis, beam swap-out methods, longitudinal injection,

use of MIKs (NLKs), ...
- Fine machine tuning to achieve the expected ultra-low-emittance

- Fighting against Touschek scattering, IBS, collective instability, beam-ion instability and beam-

induced heating due to increased machine impedance (especially RW)

- Bunch lengthening with harmonic cavities is considered to be a helpful mitigating method
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Simulation of passive harmonic cavity potential with

|

Time domain
results give ~50%
higher thresholds

multibunch tracking (mbtrack) (G. Skripka et al., NIM A806 Studies on the impact of harmonic cavity lengthening on transverse
(2016) 221-230) head-tail instability (F. Cullinan et al., PRAB 19,124401 (2016))
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e Some specific hardware
development in future DLSRs:

- Lowering of the dipole fields
preferred for DLSRs raises a
problem for dipole beamlines 2>
Very short few-pole wigglers are
being developed at the ESRF and
APS, to be inserted in the lattice

- Innovative designs of new vacuum
components with reduced
coupling impedance are being
made

& - =2

Bell-shaped BPM button developed at SIRIUS (A.R.D

Rodrigues et al., IPAC2015)
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2. Insertion of a 2 Pole Wiggler (2PW)
* 1.7 mrad x-ray fan
* 2 possible configurations
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Alternative short devices being developed at the ESRF for dipole
beamlines (J. Chavanne, LER2016)

Copper

754

“Zero-impedance” flange developed at SIRIUS (R.M.
Seraphim et al., IPAC2015)

Beam dynamics & vacuum challenges in present light sources ...

Beam Dynamics Meets Vacuum, KIT, 8-10 March 2017 18/20



e Advanced numerical evaluation of gas scattering lifetimes combining the position dependent
electron dynamics and vacuum profiles :

(M. Borland et al., IPAC2015)

Elastic and Bremsstrahlung scattering lifetimes are computed using species-specific gas pressure
profiles computed with Synrad+ and Molflow+ and local transverse/momentum apertures (DA
and LMA) calculated by elegant
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- Benchmarking of the method with a real machine (pressure) is planned
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4. Summary

e There are clear reasons for which the beam dynamics are bound to meet vacuum
chamber and vacuum issues as we continue to raise the performance of the ring-based
light sources.

e Mastering the vacuum and vacuum chamber issues is one of the keys in achieving our
target machine performance.

e The low emittance lattice is making the vacuum chambers and components more and
more miniature, both transversely and longitudinally, making their designs and vacuum
pumping difficult with classical pumps.

e Vacuum pumping with NEG coating on the other hand is becoming increasingly attractive
for the future machines.

e Beam dynamics studies, both for single particle and collective instability, fully taking into
account aperture limitations, local gas pressure and species, and the impedance aspect of
vacuum chambers, are becoming increasingly important in assuring the designed
performance of today’s and future light sources.
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