

Vacuum Instabilities at MAX IV

Francis Cullinan, Åke Andersson, Ryutaro Nagaoka, Galina Skripka, Pedro Fernandes Tavarez

Outline

- Introduction to MAX IV
- Impedance sources
- Bunch lengthening
- Single-bunch transverse instabilities
 - Head-tail modes
 - Detuning and TMCI
 - Effect of NEG coating
- Multibunch transverse instabilities
 - Ion driven
 - Resistive-wall driven

MAX IV Laboratory

- Light source facility, currently under commissioning in Lund, Sweden [1]
- 3 GeV ring based on multibend achromat lattice

Parameter	Value
Horizontal emittance (pm)	300 (200 with IDs)
Design current (mA)	500
Vacuum chamber radius (mm)	11
Natural bunch length (ps)	40

Impedance Sources

Resistive-wall

- From vacuum chamber, small-gap insertion devices
- Scaling with chamber radius b
 - Transverse: b^{-3}
 - Longitudinal: b^{-1}
- Estimated using known formulae (K.L.F Bane & M. Sands, AIP Conf. Proc., 1996)

Geometric

- From discontinuities in the vacuum chamber (tapers, flanges, BPMs)
- Scaling depends on element but always larger for smaller vacuum chamber apertures
- Estimated using electromagnetic simulations of vacuum geometry using codes such as GdfidL

Longitudinal

- Energy lost to longitudinal impedance by individual particles distorts potential from RF cavities
- Diagnostics beamline taking synchrotron radiation from a dipole bending magnet
- Effective impedance from simulation about 2 times smaller than estimated from measurement

Beam line inside ring tunnel

Transverse

- Measure frequency of transverse oscillation as a function of current
- Slope gives effective impedance

- Effective impedance from measurement: 215 Ω mm⁻¹
- Effective impedance from model: 137 Ω mm⁻¹
- Underestimates of around 2 common but good agreement can be achieved (eg. M. Carlà et al., Phys. Rev. Accel. Beams, 2016)

Transverse Head-Tail Modes

- Important for transverse instabilities
- Head-tail mode order equivalent to number of nodes in position profile
- Particles oscillate between head and tail - synchrotron oscillation
- Frequencies of neighbouring headtail modes are separated by one synchrotron frequency

Single-bunch Tune Shift

- We are able to follow the frequencies of different headtail modes
- When the frequencies of two head-tail modes meet, a very strong instability is expected

March 2017.

Transverse Mode-Coupling Instability

- When frequency of two head-tail modes meet, there is a mode-coupling instability
- Instability can be very strong but not in the case of MAX IV

Beam Dynamics meets Vacuum, Collimation and Surfaces Karlsruhe, Germany, March 2017.

Effect of NEG Coating

- NEG has large effect on the imaginary impedance
- This will in turn, have a nonnegligible effect on detuning
- NEG conductivity: 1e-6 Ω m

Effect of NEG Coating

- Detuning in presence of NEG
- Effective impedance from resistive-wall without NEG: 38 Ω mm^-1
- Effective impedance from resistive-wall with NEG: 64 Ω mm^-1
- 67 % increase on RW component (19 % of total)

Other Machines (RW only)

Multibunch Instabilities - Coupled-Bunch Modes

- The oscillation of each bunch can be out of phase
- Each coupled bunch mode separated by one revolution frequency
- Can be used to identify frequencies where impedance is large

Ion-driven - July 2016

- Fast-ion instability
 - Amplitude of beam motion grows along the train
- Wide band of low-frequency, coupled-bunch modes excited

Ion-driven - February 2017

• Ions only seen in horizontal plane with uniform filling pattern at low current

Resistive-wall driven

- One measurement performed of resistive wall
- Transverse higher-order modes are now dominant
- From measurement, estimated threshold current of resistive-wall instability: 27 mA
- Prediction from macro particle tracking and frequency domain calculations: 22 mA

Conclusion

- Trend towards smaller vacuum chambers means an increase in the machine impedance
- NEG coating has a nonnegligible effect, particularly in single-bunch
- Residual ions can drive instabilities
- Mitigation:
 - Chromaticity (TMCI, Multibunch)
 - Harmonic cavities (Multibunch)
 - Bunch-by-bunch feedback (TMCI, Multibunch)

Method

Determine resistive-wall impedance using known analytical formulae

Determine geometric impedance using electromagnetic simulation codes, eg. GdfidL

Estimate effect on measurable quantity, eg.

- Bunch length
- Frequency of beam oscillations (tune)
- Instability threshold currents

Tools:

- Analytical formulae
- More complex numerical calculations
- Macroparticle tracking

Comparison with experiment