

HALO COLLIMATION FOR SIS100 I.Strasik, O.Boine-Frankenheim

MULTI-TURN INJECTION OPTIMIZATION USING GENETIC ALGORITHMS S.Appel, O.Boine-Frankenheim

HALO BUILD-UP DUE TO SPACE-CHARGE AND COHERENT OSCILLATIONS I.Karpov, V.Kornilov, O.Boine-Frankenheim

GSI Helmholtzzentrum, TU Darmstadt

HALO COLLIMATION FOR SIS100

I.Strasik, I.Prokhorov, O.Boine-Frankenheim, PRSTAB **18**, 081001 (2015) <u>https://doi.org/10.1103/PhysRevSTAB.18.081001</u>

Protons and fully stripped ions

primary collimator is the scattering foil, two bulky secondary collimators. Single-pass and multi-pass collimation.

Two stage collimation system

- Intended for proton and fully stripped ion collimation in SIS100
- Primary collimator (thin foil) scattering of the halo particles
- Secondary collimators (bulky blocks) absorption of the scattered particles
- Multiple transition through the collimation system (multipass efficiency)

[Ref] J.B. Jeanneret, Phys. Rev. ST Accel. Beams 1, 081001 (1998) [Ref] M. Seidel, DESY Report (Dissertation), 94-103, (1994)

Very robust concept applied in many machines

Vladimir Kornilov, XRING Workshop, KIT, Karlsruhe, March 8-10, 2017

5

Interaction of ions with the primary collimator

fully stripped ions in SIS100

The same collimation system for protons and

- Interaction of the fully stripped ions with the \succ
- primary collimator FLUKA code

alo collimators

yocollimators

IS 100 lattice

Beam loss maps of the fully stripped ion beams

10

10⁻¹

10⁻²

10⁻³

10⁻⁴

10⁻⁵

10⁻⁶ -

0

200

400

Beam losses (relative)

• Beam – material interaction: FLUKA code

⁴⁰Ar¹⁸⁺ ions

- Particle tracking : MAD-X code
- Statistics: **10**⁵ primary particles

s [m]

Protons

Vladimir Kornilov, XRING Workshop, KIT, Karlsruhe, March 8-10, 2017

800

1000

600

s [m]

Collimation efficiency of the fully stripped ions

- Collimation efficiency of the fully stripped ions in SIS100 from proton up to uranium
- Decrease of the multipass efficiency starting from ⁴⁰Ar¹⁸⁺ is due to high momentum losses of heavy ions in the primary collimator.
- > The multipass efficiency is significantly improved with the help of the cryocollimators

Vladimir Kornilov, XRING Workshop, KIT, Karlsruhe, March 8-10, 2017

Partially stripped ions

primary collimator is the stripping foil, one bulky secondary collimator. Single-pass collimation.

Charge state distribution after stripping

Electron capture and electron loss — equilibrium charge-state distribution

- code GLOBAL (implemented also in LISE++) [Ref] C. Scheidenberger et al., NIMB 142 (1998) 441
- Medium-Z materials (AI Cu) → suitable for efficient stripping for wide range of primary ions and beam energies (0.5 mm thick titanium foil is optimal for SIS100 beams)
- Thermomechanical calculation for fast beam losses \rightarrow titanium can be melted

0.5 mm thick stripping foil

Particle tracking of the stripped ions

The ions are deflected by the quadrupole towards the collimators

MULTI-TURN INJECTION OPTIMIZATION USING GENETIC ALGORITHMS

S.Appel, O.Boine-Frankenheim, NIM A (2016) http://dx.doi.org/10.1016/j.nima.2016.11.069

Vladimir Kornilov, XRING Workshop, KIT, Karlsruhe, March 8-10, 2017

Multi-Turn Injection in SIS18

Multi-Turn Injection

S.Paret, O.Boine-Frankenheim, HB2010, Morschach, Switzerland, 2010

GSI

Vladimir Kornilov, XRING Workshop, KIT, Karlsruhe, March 8-10, 2017

Multi-Turn Injection Optimization

S.Appel, O.Boine-Frankenheim, NIM A (2016)

Vladimir Kornilov, XRING Workshop, KIT, Karlsruhe, March 8-10, 2017

G 51

Genetic Algorithms

References in S.Appel, O.Boine-Frankenheim, NIM A (2016)

Multi-Turn Injection Optimization

Development of the Beam Loss during the optimization. 500 individuals, Tournament selection, n is N of injected turns

Vladimir Kornilov, XRING Workshop, KIT, Karlsruhe, March 8-10, 2017

Multi-Turn Injection Optimization

Vladimir Kornilov, XRING Workshop, KIT, Karlsruhe, March 8-10, 2017

HALO BUILD-UP DUE TO SPACE-CHARGE AND COHERENT OSCILLATIONS

I.Karpov, V.Kornilov, O.Boine-Frankenheom, PRAB **19**, 124201 (2016) <u>https://doi.org/10.1103/PhysRevAccelBeams.19.124201</u>

Beam Halo & Coherent Oscillations

- Halo formation due to nonlinear space-charge forces, nonlinearities, etc.
- Incoherent effects
- Usually, a slow diffusive process
- Coherent oscillations cause emittance blow-up
- Fast Feedback systems (dampers) for injection errors

Transverse Decoherence

Linear transverse bunch oscillations after a kick or after an injection offset.

In reality: causes a transverse emittance blow-up. Measurements in SIS18

Long-term decoherence with space-charge: V.Kornilov, O.Boine-Frankenheim, PRSTAB **15**, 114201 (2012)

G 51)

Transverse Decoherence with Space-Charge

The role of space-charge in the early stage of the transverse decoherence: Measurements in SIS18, GSI Darmstadt, and self-consistent particle tracking simulations

I.Karpov, V.Kornilov, O.Boine-Frankenheom, PRAB 19, 124201 (2016)

G SS 1

Halo Build-up

- Particles are excites (large amplitudes) by space-charge
- The resonant particles (incoherent=coherent) are excited
- Space-charge: the driving force and the incoherent tune shift
- Fast process

Self-consistent particle tracking simulations for bunches with space-charge

I.Karpov, V.Kornilov, O.Boine-Frankenheom, PRAB 19, 124201 (2016)

HALO COLLIMATION FOR SIS100 I.Strasik, O.Boine-Frankenheim

MULTI-TURN INJECTION OPTIMIZATION USING GENETIC ALGORITHMS S.Appel, O.Boine-Frankenheim

HALO BUILD-UP DUE TO SPACE-CHARGE AND COHERENT OSCILLATIONS I.Karpov, V.Kornilov, O.Boine-Frankenheim

GSI Helmholtzzentrum, TU Darmstadt