

Status of fullSim PandaRoot studies in the Charmonium-like Exotics (CCE) PWG

(input to yesterday's PhysCom discussion, on a Panda phase-I paper)

> Frank Nerling GU Frankfurt, GSI Darmstadt

Possible fullSim results for a "phase-1" physics paper

- X(3872) energy scan
 - FullSim studies completed
 - ✓ Released
- X(3872) → Z[±](3730)π^{-/+}
 - FullSim studies started/ongoing
 - Nothing yet released (prod. numbers, summarised in IN)
- Zc(3900) production and decays into pbar d
 - FullSim studies started
 - > On hold since a year, nothing yet released
- $X(3872) \rightarrow DDbar decays$
 - FullSim studies started,1st presentation this meeting, Wed,
 - Status not yet known, nothing yet released

X(3872) energy scan

X(3872) Lineshape Study and the new LHCb Measurement

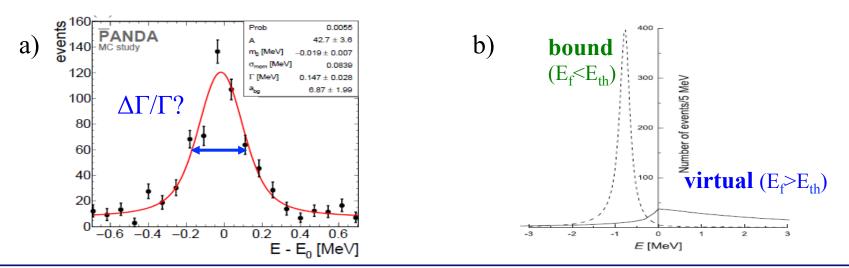
PANDA CM Mainz

Charmonium Exotics Session

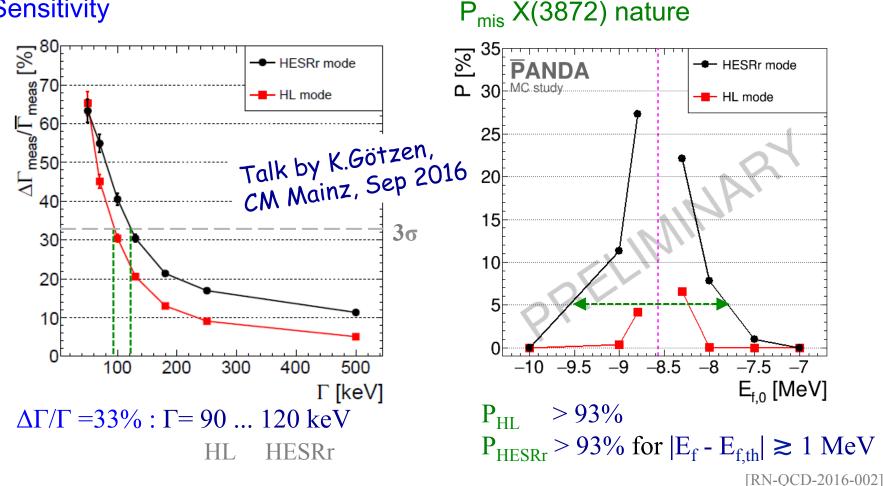
14. Sep. 16

K. Götzen, R. Kliemt, F. Nerling, K. Peters

Frank Nerling


Charmonium-like Exotics PWG - CM Dec 2016

- Nature of X(3872)
 - Need lineshape and width to clarify nature
- Approach at PANDA
 - Fine scan around nominal mass
 - =>measurement of energy dependent cross-section
- Analysis goals
 - Sensitivity of Γ measurement (conventional BW)
 - Sensitivity for virtual/bound state (molecular picture)


Charmonium-like Exotics PWG - CM Dec 2016

Main results (σ = 50nb assumed)

- Achievable precision in measured BW width Γ
- Clarify nature by lineshape measurement (distinguish virtual/bound state)

Sensitivity

$X(3872) \rightarrow Z^{\pm}(3730)\pi^{-/+}$

Frank Nerling

Charmonium-like Exotics PWG – CM Dec 2016

05/12/2016

Simulation of $X(3872) \rightarrow Z^{\pm}(3730)\pi^{\mp}$ Transitions

L. BIANCHI, FORSCHUNGSZENTRUM JÜLICH A. BLINOV, NSU & BINP NOVOSIBIRSK S. LANGE, UNI GIESSEN E. PRENCIPE, FORSCHUNGSZENTRUM JÜLICH

PANDA Collaboration Meeting #56

Bochum, Mar 2, 2016

Frank Nerling

Charmonium-like Exotics PWG - CM Dec 2016

Motivation

Talk by S.Lange, CM Uppsala, Sep 2015

CM Bochum, March 2016

Talk by L.Bianchi,

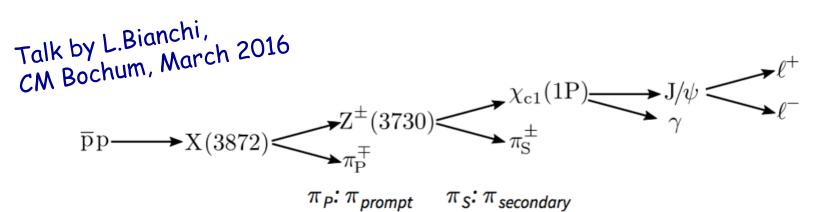
- Strong theoretical motivations for Z state at the DD threshold
 - Z near DD* threshold: Z(3900) (observed, BESIII)
 - Z near D*D* threshold: Z(4020) (observed, BESIII)
 - Z near DD threshold: never observed
 - Quantum numbers incompatible with e⁺ e⁻ production
- Transitions between exotic states
 - Y(4260) \rightarrow Z(3900) $^{-}\pi^{+}$ (observed, BESIII)
 - Y(4260) \rightarrow X(3872) γ (observed, BESIII)
 - $-X \rightarrow Z$ or $Z \rightarrow X$ still unobserved
- PANDA is a X(3872) factory
 - Belle 2: 7500 X(3872) in \sim 10 years
 - BESIII: \sim 250 X(3872)/year
 - $-\bar{P}ANDA$: [57000 \div 146000] X(3872)/day ($\mathcal{L} = 0.864 \text{ pb}^{-1}/\text{day}$)
- ⇒ PANDA: unique capabilities for studying rare/suppressed processes involving X(3872)

[IN-PRP-2015-004]

05/12/2016

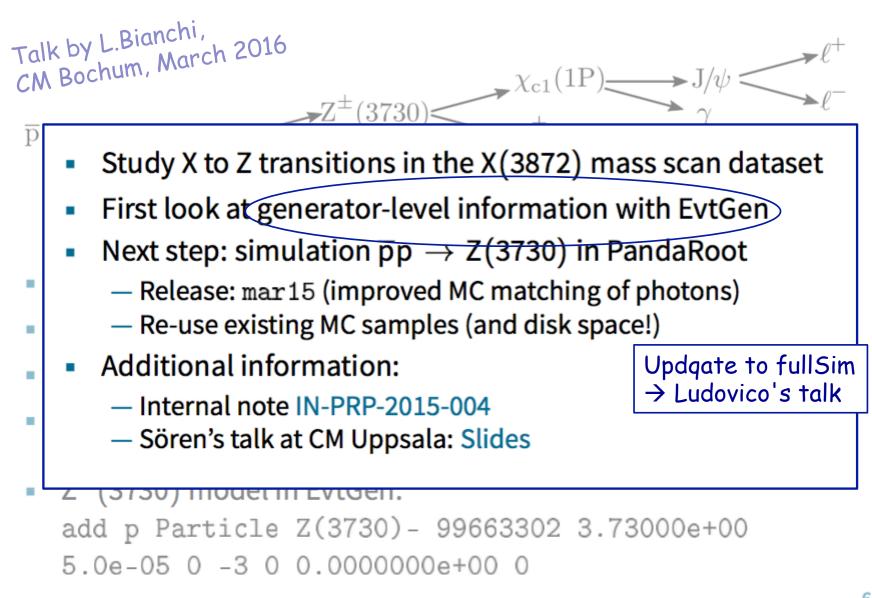
$$egin{aligned} \mathsf{N}_{\mathsf{evt}}/\mathsf{day} &= \mathsf{N}_{\mathsf{X}}/\mathsf{day} imes \mathcal{B}(\mathsf{X} o \mathsf{Z}\pi) imes \mathcal{B}(\mathsf{Z} o \chi_{\mathsf{c1}}\pi) imes \mathcal{B}(\mathsf{X}_{\mathsf{c1}} o \mathsf{J}/\psi\gamma) imes \mathcal{B}(\mathsf{J}/\psi o \ell^+\ell^-) \end{aligned}$$

- $\mathcal{B}(\chi_{c1}
 ightarrow\mathsf{J}/\psi\gamma)$ = (33.9 \pm 1.2)% (PDG)
- $\mathcal{B}(J/\psi \rightarrow \ell^+ \ell^-)$ = 11.52% (PDG)
- $\mathcal{B}(X \to Z\pi) imes \mathcal{B}(Z \to \chi_{c1}\pi) = \mathcal{B}_{unknown}$
- $N_{\text{evt}}/\text{day} = [2200 \div 5700] \times B_{\text{unknown}}$

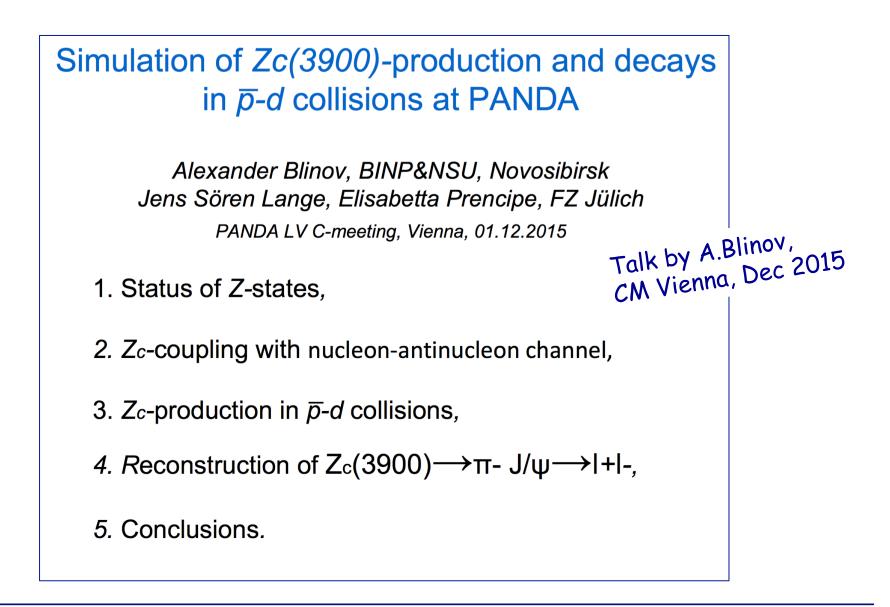

Talk by L.Bianchi, CM Bochum, Mar 2016

- Perform analysis
- Calculate minimum $\mathcal{B}_{unknown}$ for which we can get 5σ during data-taking period

Frank Nerling

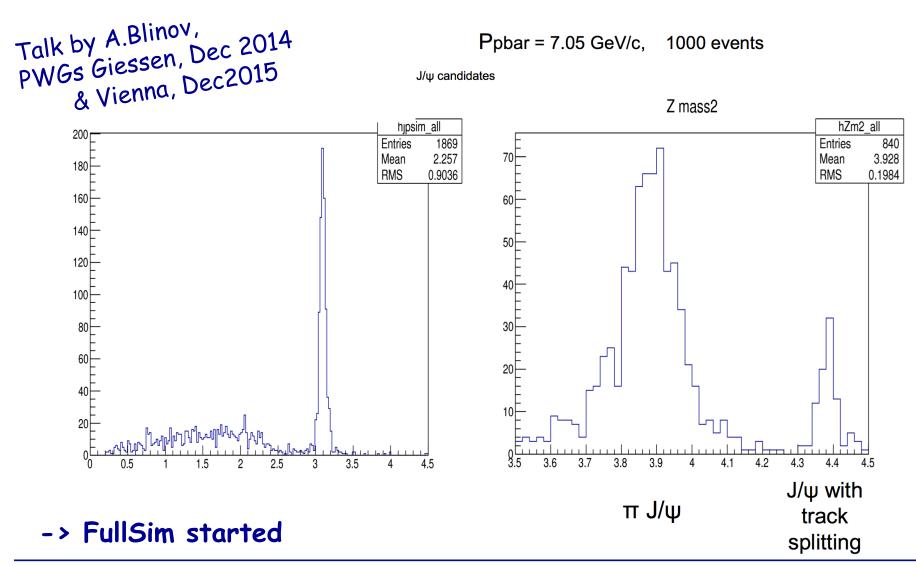


- 100k events, using SimpleEvtGenRO
- Using pbarpSystem1 (S = 1) with $p_{\text{beam}} = 6.99102 \text{ GeV/c}$
- PHSP decays
- All BR 1.0
- Z[±](3730) model in EvtGen: add p Particle Z(3730) - 99663302 3.73000e+00 5.0e-05 0 -3 0 0.0000000e+00 0
 Work in progress, Status report: CM GSI, Dec 2016



Zc(3900) production and decays into pbar d

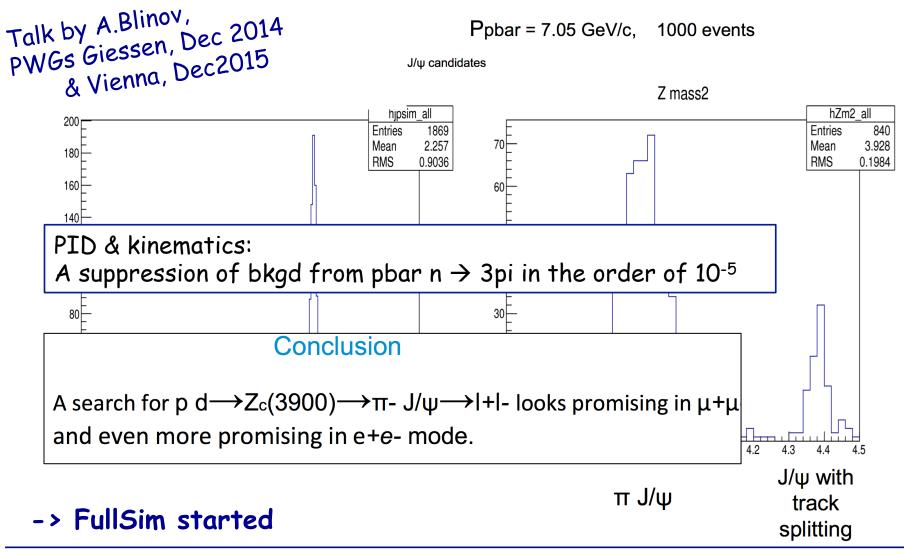
Zc(3900) production and decays into pbar d



Panda Another unique PANDA possibility: pd → Z⁻p

Simulation of non-resonant p d $\rightarrow \pi$ - J/ $\psi \rightarrow \mu$ + μ -

Frank Nerling


Charmonium-like Exotics PWG - CM Dec 2016

05/12/2016

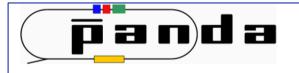
☐ and a Another unique PANDA possibility: pd → Z⁻p

Simulation of non-resonant p d $\rightarrow \pi$ - J/ $\psi \rightarrow \mu$ + μ -

Frank Nerling

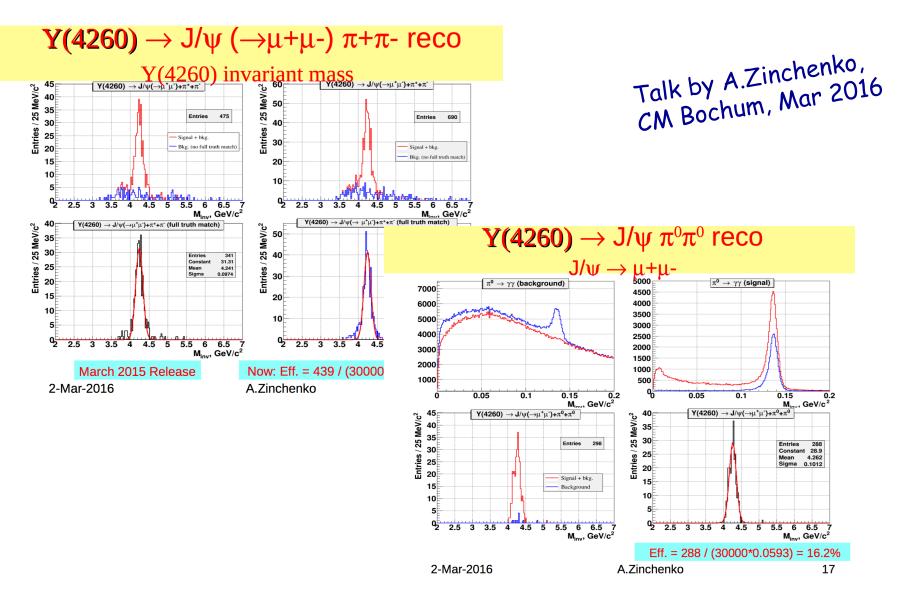
Charmonium-like Exotics PWG - CM Dec 2016

05/12/2016



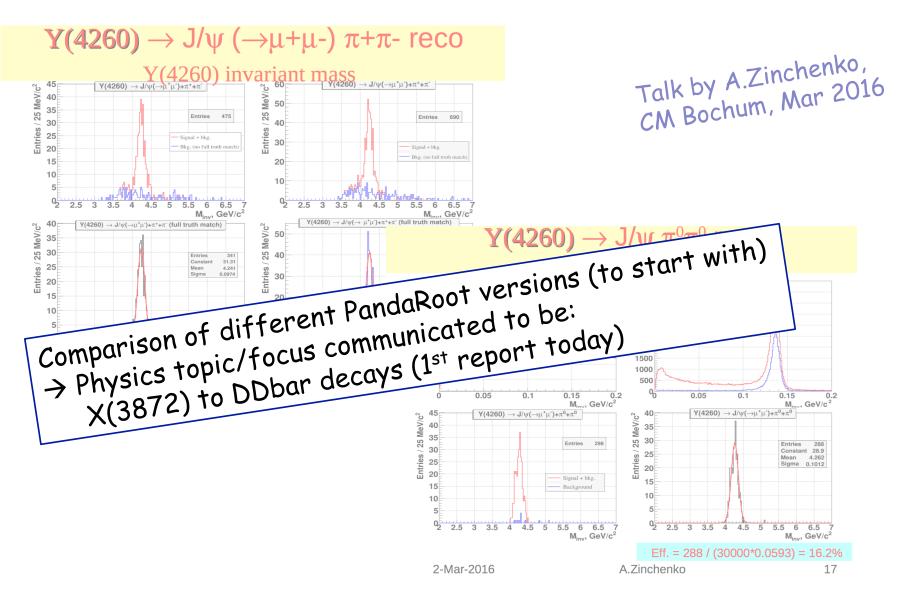
$X(3872) \rightarrow DDbar decays$

Recent results on the full simulation of charmoniumlike decays


<u>A. Zinchenko</u>, M.Barabanov, A.Vodopianov (VBLHEP, JINR, Dubna)

PANDA LVI Collaboration Meeting 29.02 – 4.03 2016 Ruhr-Universitat Bochum, Germany

FullSim PandaRoot studies



FullSim PandaRoot studies

Charmonium-like Exotics at PANDA in view of "phase-1" physics paper

- X(3872) energy scan
 - FullSim studies completed
 - ✓ Released

Material ready to go in: a) exemplary proof of princple for E-Scan b) concrete feasibility and performance study for X(3872)

- X(3872) → Z[±](3730)π^{-/+}
 - FullSim studies started/ongoing
- Updated status this Wed \rightarrow timelines (paper/Ludovico)
 - Nothing yet released (prod. numbers checked, summarised IN)
- Zc(3900) production and decays into pbar d Update expected March CM 2017
 - \rightarrow At least possible to mention FullSim studies started (qualitatively)
 - > On hold since a year, nothing yet released

• X(3872) \rightarrow DDbar decays \rightarrow First status report today

- \succ FullSim studies started, 1st presentation this meeting, Wed,
- Status not yet known, nothing yet released

Charmonium-like Exotics at PANDA in view of "phase-1" paper -- Summary

Charmonium-like exotics at PANDA

> uniquely gluon-rich process: ppbar
 → high cross section for states with gluonic excitations / exotics
 > unique in precise measurement of widths
 → sub-MeV range, needed to understand X,Y,Z nature
 > unique in discovery potential for high spins:
 → no angular momentum barrier (and no restriction spin)

=> Only PANDA will enable to explore complete multiplets and clarify nature of X,Y,Z

Possible Topics for Early Physics Beam

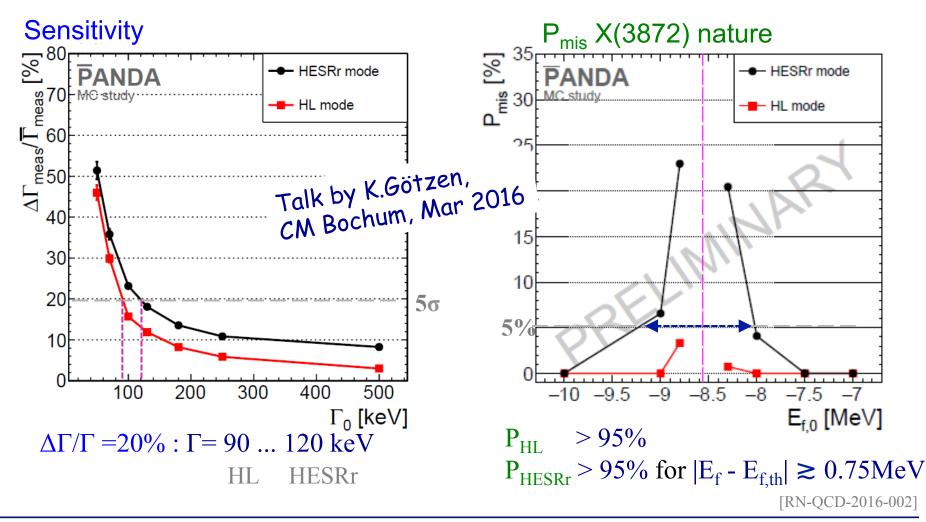
- X(3872) energy scan (results released)
- \succ X(3872) → Z[±](3730)π^{-/+} (under work)
- \blacktriangleright Zc(3900) production and decays into pbar d (on hold, to be resumed)
- \succ X(3872) \rightarrow DDbar decays (first studies started)

=> Depending on timeline, manpower/focus to be strengthened

Additional slides

Frank Nerling

Charmonium-like Exotics PWG – CM Dec 2016


05/12/2016

Main results (σ = 100nb assumed)

- Achievable precision in measured BW width Γ
- Clarify nature by lineshape measurement (distinguish virtual/bound state)

Rough estimate of stats

• X(3872) energy scan

140 evts (on peak) / 1-2 days => 40 scan points x 2 days = 80 days

• X(3872) → DDbar decays

- > X > DDbar: In principle 10-20 x Xscan case, (90% / 5% = factor 20)
- ➢ Nb of DDbar evts? Many individ.decays, with relatively small BR (~5%)

• $X(3872) \rightarrow Z^{\pm}(3730)\pi^{-/+}$

- ▶ J^P = 0⁺ (I=1), X(3872) production: 50k 145k, plus:
- \triangleright BR(Z → $\chi_{c1}\pi$) =?, BR(X → Zπ) ≤ 10% => 50-145k x 0,34 x 0,115

 $= 2200 - 5700 \times 0,10 \times 0,xx => \le 220 - 570 / day$

plus reco-effi $\leq 20\% \Rightarrow 45 - 100$ /day

Assume Xscan data, 30 points: rough estimate factor $1/3 \Rightarrow 15 - 30 \text{ evts} / \text{day} \Rightarrow 80 \text{ days} = N_{\text{Zrec}} = 1200 - 2500$

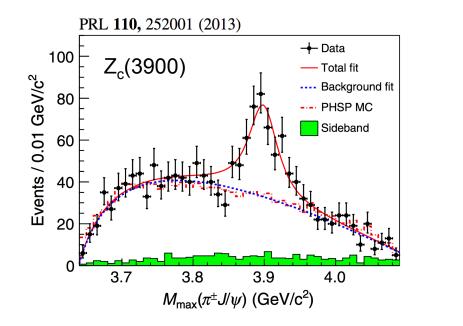
Rough estimate of stats

Zc(3900) production and decays into pbar d

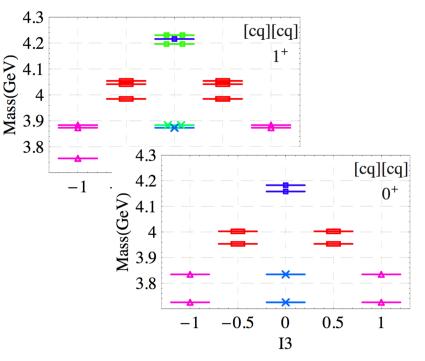
- Zc production not neccessarily suppressed (OZI argument, vs ccbar))
- W(P_N< P) = probability for neutron momenta < P => W(n) <= 200 MeV (90%)</p>
- Ecms = ~4 GeV: FWHM = 160 MeV => sigma = 60-70 MeV

=> ppbar: sigma = 80 -180 keV (X scan)

pbar d: sigma = 70 MeV => factor 1000 worse

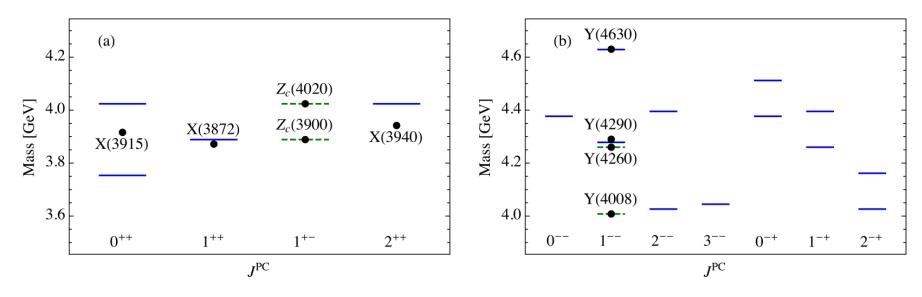

but no recoils, need clever idea, anyhow:

=> NO energy scan really possible, but observation



Motivation

[N.Drenska et al., Riv. Nuovo Cim. 033 (2010) 633]


unexpected, manifestly exotic!

Complete multiplets to be observed? $\rightarrow e.g. 0^+, 1^+, 2^+, \dots$ spin partner states \rightarrow further charmonia channels needed

Charmonium-like Exotics PWG - CM Dec 2016

Further channels of interest – many, still in 2025?

Cleven et al., arXiv:1505.01771

- Many more charged and neutral channels predicted than observed
 - > 67 among 80 ground states still to be discouvered
- Only PANDA has discovery potential for high spin states (angular momentum barrier)
 - e.g. predicted J = 3 state
- Observation of complete multiplets needed to solve X,Y,Z puzzle

=> PANDA

[C.Hahnhart, GSI, May 2015]

"Old Released" results

Summary of "old released PANDA plots and results" – Meson spectroscopy

> The PANDA Charmonium, Charmonium-like Exotics and Light Quark Meson Physics Working Groups

> > Editors:

E. Fioravanti¹, F. Nerling², and M. Pelizaeus³

¹INFN Ferrara ²HIM, GSI Darmstadt ³Ruhr-Universitaet Bochum

November 19, 2015

Chapter 2

Charmonium-like Exotics

In the following sections, we summarise the results obtained from MC simulation studies performed in view of the feasibility of PANDA for spectroscopy of charmonium-like exotics, like the famous X,Y,Z states.

- Study for spin-exotic charmonium hybrid $\tilde{\eta}_{c1}$ $\rightarrow M.Pelizaeus$
- Study of X(3872) energy scan
 - \rightarrow M.Galuska et al.
- Study of Y(4260) \rightarrow *E*.*Prencipe et al.*
- Study of Zc(4430) state → M.Pelizaeus

An internal PANDA note...

A proposal for Z state search and estimate of X, Y, Z production rates at $\overline{P}ANDA$.

 Alexander Blinov, Budker Institute of Nuclear Physics and Novosibirsk State University, Novosibirsk (Russia);
 Martin Galuska, Justus-Liebig-Universität, Giessen (Germany);
 Jens Sören Lange, Justus-Liebig-Universität, Giessen (Germany);
 Elisabetta Prencipe, Forschungszentrum Jülich (Germany);
 James Ritman, Forschungszentrum Jülich (Germany);

on behalf of the $\overline{P}ANDA$ charmonium-light exotics group.

Abstract

The $\overline{P}ANDA$ detector at FAIR (Facility for Antiproton and Ion Research) in Darmstadt (Germany) aims to conduct an antiproton-proton experiment with a very high rate capability, up to 10⁷ interactions per second. In the past 12 years several unpredicted resonant states were observed. Prominent examples are the so-called Z charged states and their neutral partners, that were first observed at the Belle and BES III experiments two years ago. Some of them have recently been confirmed by LHCb. They have risen the interest in searching for further charmonium-like states. Measurements in $\bar{p}p$ annihilation are complementary to what has been achieved in this sector by e^+e^- colliders, and running experiments in pp collisions. In this short report, we present some extrapolations to understand the level of competitiveness of FANDA, in the first day of data taking, assuming a luminosity $\mathcal{L} = 10^{31}$ cm⁻² s⁻¹.

 $\succ \bar{p}p \rightarrow X(3872) \rightarrow Z(3730)\pi$

Table 2: Summary of the expected X, Y, and Z production rates per day in $\overline{P}ANDA$, assuming different detector luminosity ($\mathcal{L}/pb^{-1}/day$). The calculation is performed by multiplying luminosity and cross sections. The cross section upper limits are used in these calculations.

Resonance	$\mathcal{L}=8.64$	$\mathcal{L}{=0.864}$	$\mathcal{L}{=}0.432$	Ref.
X(3872)	432000	43200	21600	[18]
Y(4260)	19000	1900	950	
$Z(3900)^{+}$	4050	405	202	[13]

 \triangleright

CHARMONIUM PHYSICS WORKING GROUP

Elisa Fioravanti INFN Ferrara

PANDA Collaboration Meeting, Nov 30 - Dec 04 2015, Vienna

Frank iverling

Charmonium-like Exotics PWG - CIVI Dec 2016

05/12/2010

Summary

***** Charmonium spectroscopy at PANDA:

- Precision measurements mandatory: e.g. branching fractions, masses and widths
- ★ Scutiny Group merged proposals made by the various PWGs to a two year early physics proposal

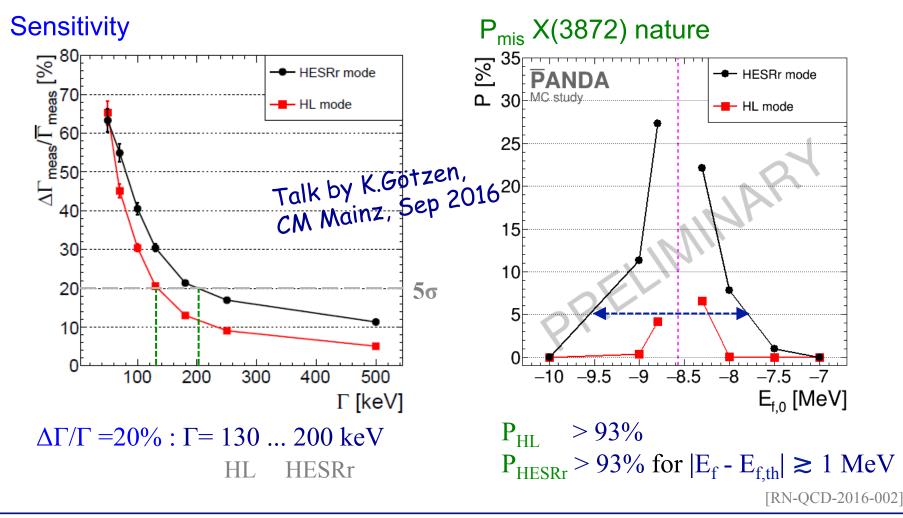
Charmonium spectroscopy:

- 13 days at 5.55 GeV/c for χ_{c1} angular distribution studies
- 36 days at 5.73 GeV/c for χ_{c2} angular distribution studies
- 60 days at 5.61 GeV/c for h_c width measurement

***** Future plans:

- Full simulation of the analysis done during the scrutiny process

***** Limited manpower:


- like in Charmonium-like Exotic and Light Mesons PWGs - Anyone is welcome!

Main results (σ = 50nb assumed)

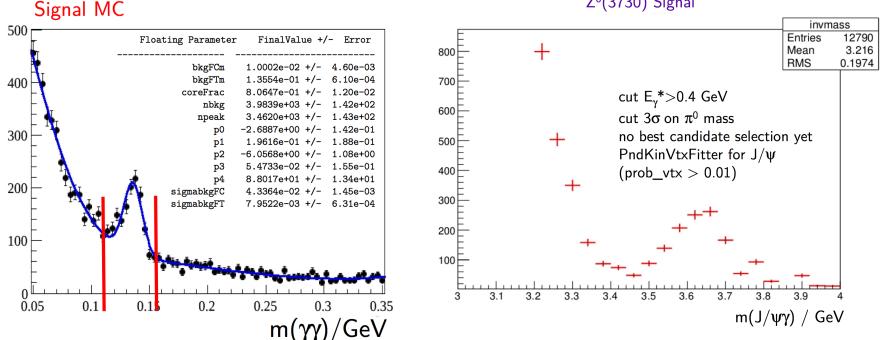
- Achievable precision in measured BW width Γ
- Clarify nature by lineshape measurement (distinguish virtual/bound state)

Talk by S.Lange, CM Uppsala, Sep 2015

Open questions about Z states

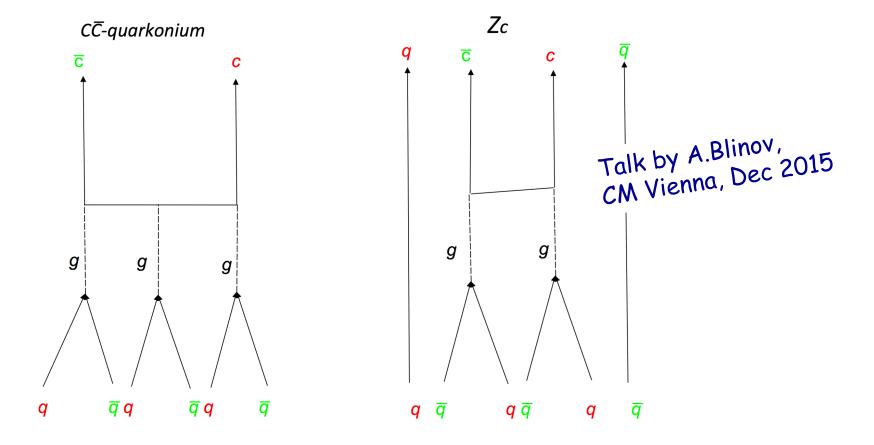
- charged and neutral Z states \rightarrow same mass ? [ccuu,ccdd] vs. [ccud]
- why are all the Z states observed above threshold ? (contradicts interpretation as molecules and CUSPs)
- transitions of XYZ states ? $Y \rightarrow Z$, seen at BESIII (Y(4260) \rightarrow Z(3900) π^+) $Y \rightarrow X$, seen at BESIII (Y(4260) \rightarrow X(3872) γ) \rightarrow what about X \rightarrow Z transistions?

Z near DD threshold0+never observedZ near DD* threshold1+Z(3900)Z near D*D* threshold0+,1+,2+Z(4020)


[IN-PRP-2015-004]

 $\bar{p}p \rightarrow X(3872) \rightarrow Z(3730)\pi$ $X(3872) \rightarrow Z(3730)^0 \pi^0$ (with L=1), Talk by S.Lange, PWG Uppsala, June 2015 where $Z(3730)^0$ decays to $J/\psi\gamma$ and $\chi_{c1}\pi^0$ Also, possible charged $Z(3730)^+$ candidate, decaying to $\chi_{c1}\pi^+$,

with subsequent $\chi_{c1} \to J/\psi\gamma$

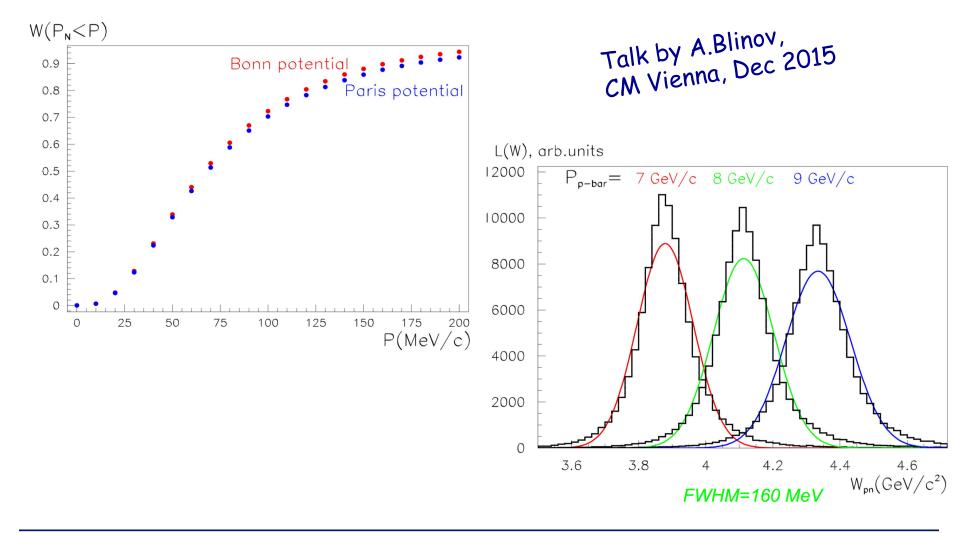


Z⁰(3730) Signal

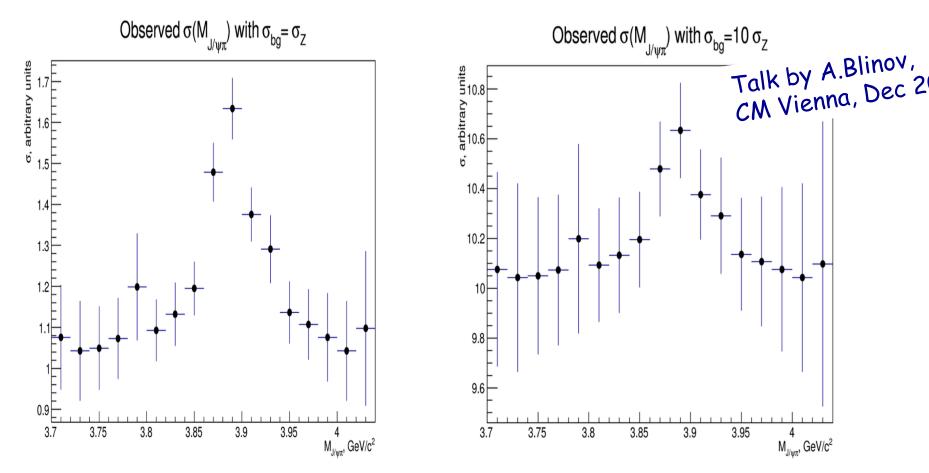
panda

Zc(3900) production and decays into pbar d

Couplings with nucleon-antinucleon channel: CC v.s. Zc

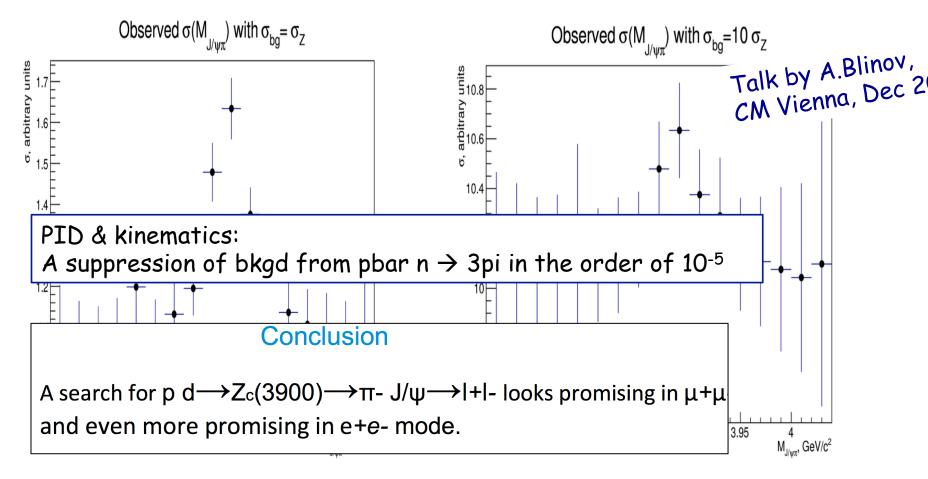


Cumulative probability distribution of P_N in deuteron



Zc(3900) production and decays into pbar d

Simulation of Z-search with $\sigma_{bg}/\sigma_z = 1$ and 10



Zc(3900) production and decays into pbar d

Simulation of Z-search with $\sigma_{bg}/\sigma_z = 1$ and 10

Charmonium-like Exotics PWG

Who we are:

- Univ. Bochum
 - M.Pelizaeus

GSI Darmstadt

K.Götzen, R.Kliemt, F.Nerling

• JINR Dubna

- M.Barabanov, A.Luchinsky, A.Zinchenko
- INFN Ferrara
 - E.Fioravanti (on hold)
- Univ. Giessen
 - M.Galuska, S.Lange, tbc
- FZ Jülich
 - E.Prencipe, tbc (on hold for a few month)
- HI Mainz
 - T.Weber (left), others tbc
- BINP Novosibirsk
 - > A.Blinov

Charmonium-like Exotics PWG

Who we are:

- Univ. Bochum
 - M.Pelizaeus

GSI Darmstadt

K.Götzen, R.Kliemt, F.Nerling

• JINR Dubna

- M.Barabanov, A.Luchinsky, A.Zinchenko, tbc
- INFN Ferrara
 - E.Fioravanti
- Univ. Giessen
 - M.Galuska, S.Lange, tbc
- FZ Jülich
 - ➢ E.Prencipe, tbc
- HI Mainz
 - > T.Weber, tbc
- BINP Novosibirsk
 - ➢ A.Blinov, tbc

Charmonium-like Exotics PWG

• Univ. Bochum

- Study for spin-exotic charmonium hybrid η_{cl} , further channels (PANDA Phys. Perf. Report)
- Very quick, first look to kinematics at PANDA for Zc(4430)

GSI Darmstadt

- Scrutiny studies for X,Y,Z (feasibility for various charmonia and recoils)
- X(3872) resonance energy scan (width, lineshapes)

JNR Dubna

- PandaRoot QA checks
- EvtGen modelling for X(3872)

• INFN Ferrara

Scrutiny studies for X(3872)

• Univ. Giessen

- X(3872) resonance energy scan (width)
- Search for Zc(3730) at PANDA

• FZ Jülich

- Y(4260) first studies (also Giessen)
- Search for Zc(3730) at PANDA

• HI Mainz

> X(3872) resonance energy scan (trial to extract lineshape, importance of precise lumi)

BINP Novosibirsk

- > Study of pbar d \rightarrow Z⁻ p, with additional recoil proton detector
- Search for Zc(3730) at PANDA (also Jülich)

Frank Nerling

Charmonium-like Exotics PWG - CM Dec 2016

Activities, achievements so far

- PANDA Physics Performance Report
 - old analysis framework
 - among others dedicated studies for Charmonium-like exotics
- Scrutiny studies
 - fastSim studies (tuned to full sim)
 - for X,Y,Z production, various charmonia and recoils
- Dedicated X(3872) energy scan studies
 - > pbarp → X(3872) → J/ $\psi\pi^-\pi^+$ (J/ ψ → e+e- and partly also mu+mu-)
 - 3 independent analyses (M.Galuska, T.Weber, K.Götzen)

 \rightarrow with different focus and levels of completeness,

cf. Master thesis, IN-REP-2015-005, Talks at last PWG meetings, respectively

- X,Y,Z production and proposal of a search for Z(3730) at PANDA
 - estimate of X,Y,Z states produced at PANDA
 - > Search for $X \rightarrow Z$ transition (S.Lange, E.Prencipe, A.Blinov, ...)
 - > Zc production on deuterim target: pd \rightarrow Z⁻p (A.Blinov)

Charmonium-like Exotics at PANDA

Charmonium-like exotics at PANDA

- > uniquely gluon-rich process: ppbar
 → high cross section for states with gluonic excitations / exotics
 > unique in precise measurement of widths
 → sub-MeV range, needed to understand X, Y,Z nature
 > unique in discovery potential for high spins:
 - \rightarrow no angular momentum barrier (and no restriction spin)

Even topics for Early Physics Beam

- X(3872) energy scan
- Charmonium survey (incl. Zc, Hybrids)

=> Only PANDA will enable to explore complete multiplets & clarify nature of X,Y,Z

Charmonium-like Exotics at PANDA

Manpower situation

- Only 3 full simulation studies focusing on physics "results"
 → feasibility studies for scrutiny started to extend to fullSim
- Many more channels to be updated, and also to be started → new ideas and proposals of course welcome, also active analysts

Future plans to enrich PANDA repertoire of unique PANDA physics:

- Prioritise work on channels, extend coverage of complete physics case
 - ightarrow full simulations with realistic background estimations
 - \rightarrow extension to include angular distributions (PWA)
 - \rightarrow go for more realistic generators (incl. charm)
- Combine efforts as much as possible (CC, LQM, ,,,)
 - \rightarrow data production, knowledge, ...

=> New manpower welcome!

Short Summary of Results, FoMs

Scrutiny studies: Feasibility for XYZ states at PANDA

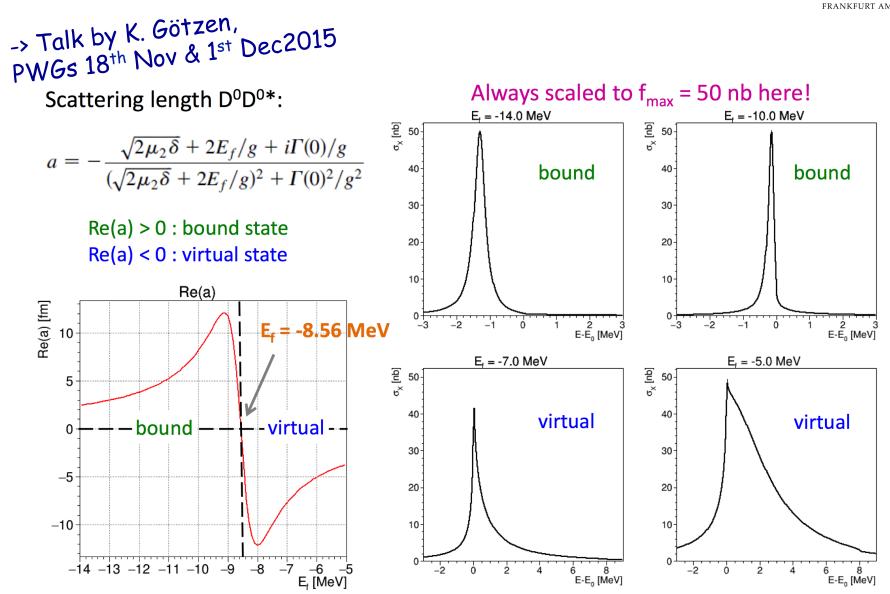
[K .Götzen, R. Kliemt, F. Nerling]

$\sigma_s = 10 \text{ nb}, E_{cms} = 5.5 \text{ GeV}, 1 \times 10^{32}$

10nb	L/cms			
Гана	detopt		Full	
E_cm	mode	t [d]	S/B	Dal QA
	etac(2Kpi0) 2pi	7,0	0,004	✓
	etac(2Kpi0) 2pi0	3,0	0,016	✓
	etac(2Kpi0) 2eta	9,4	0,20	✓
	etac(2Kpi0) 2K	1,4	0,079	\checkmark
	etac(KsKpi) 2pi	3,7	0,11	✓
	etac(KsKpi) 2pi0	3,7	0,26	✓
	etac(KsKpi) 2eta	10	0,19	✓
	etac(KsKpi) 2K	2,8	0,69	✓
5,5	Jpsi(2e) 2pi	0,8	2,6	✓ ✓
	Jpsi(2e) 2pi0	0,9	2,1	✓
	Jpsi(2e) 2eta	3,8	0,57	✓
	Jpsi(2e) 2K	0,7	2,7	✓
	Jpsi(2mu) 2pi	0,6	3,1	✓
	Jpsi(2mu) 2pi0	0,6	3,0	✓
	Jpsi(2mu) 2eta	2,3	0,82	✓
	Jpsi(2mu) 2K	0,5	3,8	\checkmark

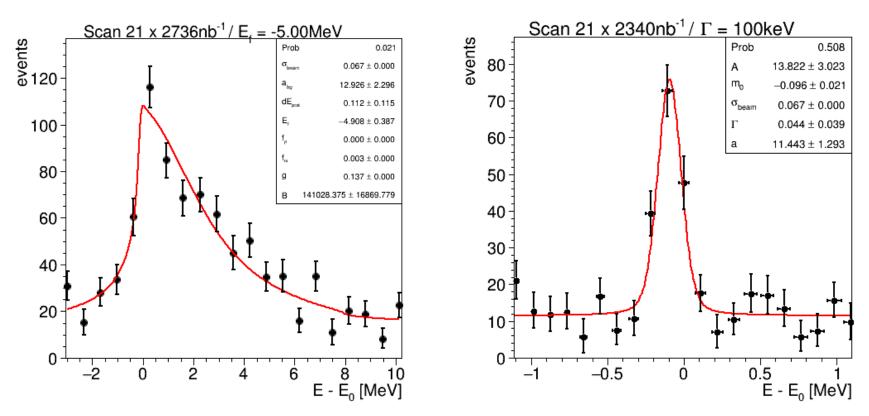
 $\sigma_s = 1 \text{ nb}, E_{cms} = 5.5 \text{ GeV}, 1x10^{31}$

1nb	L/cms			
Г. сто	detopt		Full	
E_cm	mode	t [d]	S/B	Dal QA
	etac(2Kpi0) 2pi	701	0,000	✓
	etac(2Kpi0) 2pi0	291	0,002	\checkmark
	etac(2Kpi0) 2eta	118	0,020	\checkmark
	etac(2Kpi0) 2K	43	0,008	\checkmark
	etac(KsKpi) 2pi	88	0,011	✓
	etac(KsKpi) 2pi0	37	0,026	\checkmark
	etac(KsKpi) 2eta	133	0,019	\checkmark
5,5	etac(KsKpi) 2K	28	0,069	✓
5,5	Jpsi(2e) 2pi	7,6	0,26	✓
	Jpsi(2e) 2pi0	9,2	0,21	✓
	Jpsi(2e) 2eta	38	0,057	\checkmark
	Jpsi(2e) 2K	7,2	0,27	\checkmark
	Jpsi(2mu) 2pi	6,3	0,31	✓
	Jpsi(2mu) 2pi0	6,4	0,30	✓
	Jpsi(2mu) 2eta	24	0,082	✓
	Jpsi(2mu) 2K	5,1	0,38	\checkmark


Time QA (days) green < 30 yellow < 365 red >= 365

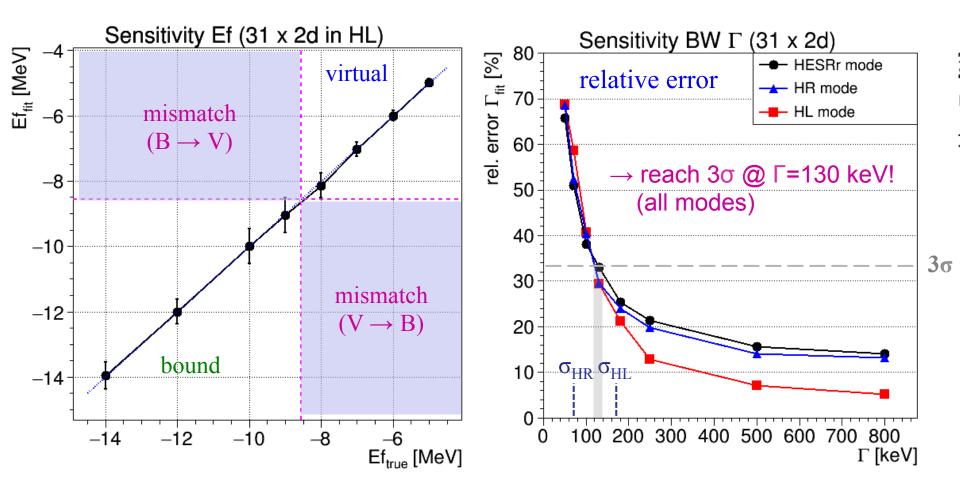
S/B QA green > 1 yellow > 0.1 red <= 0.1 Dal QA ok < 1.5

Lineshapes for different E_f

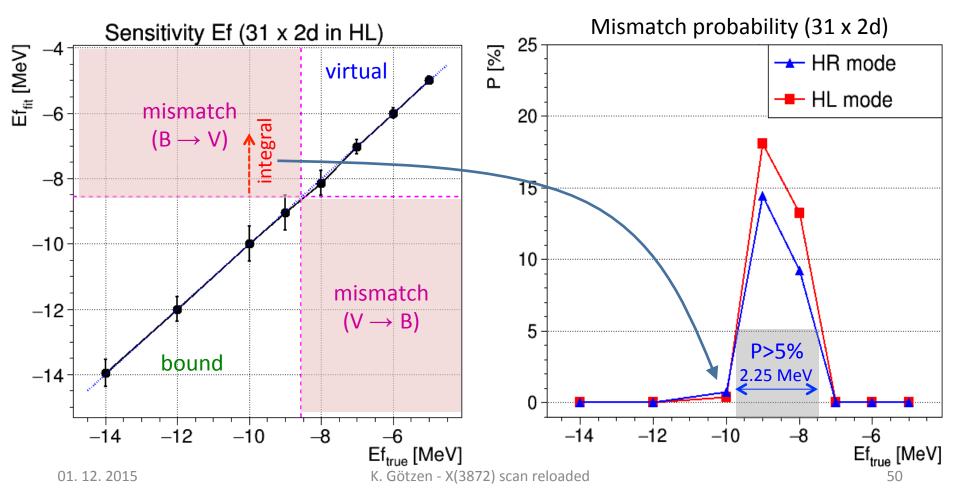

Scan Examples Molecule Lineshape

HR: 21 x 2 days E_f = -5 MeV

HESRr: 21 x 2 days Γ = 100 keV



Scan Examples Molecule Lineshape



-> Talk by K. Götzen, PWGs 18th Nov & 1st Dec2015

Sensitivities Molecule Lineshapes (31 x 2d)

- Extract standard deviation and bias from toy MC fits
- How well can virtual and bound state be distinguished?
- Uncertainty = $\sigma_{Gaussian} \rightarrow$ Integrate in mismatch region

Our Focus: Charmonium-like Exotics

List of channels / charmonia (XYZ states):

•
$$J/\psi + X$$
, $J/\psi -> e^+e^-/\mu^+\mu^-$
• $\eta_c + X$, $\eta_c -> K^+K^-\pi^0/K_sK^{+/-}\pi^{-/+}$

 \rightarrow with various recoils: X = $\pi^{-}\pi^{+}$, $\pi^{0}\pi^{0}$, $\eta\eta$, KK

 \rightarrow at different energies: E_{cms} = 4.5, 5.5 GeV

 \rightarrow and the various **detector options** (1+5)

Scenarios proposed:

- a) Nominal Set-up: 1,2,3,4,5 b) w/o Barrel EMC: 1,3,4,5 c) w/o FS: 1,2,3,4
- d) w/o Disc DIRC: 1,2,3,5
- e) w/o Barrel DIRC: 1,2,4,5

f) STT only:

2,3,4,5 see talk by K.Götzen → FastSim

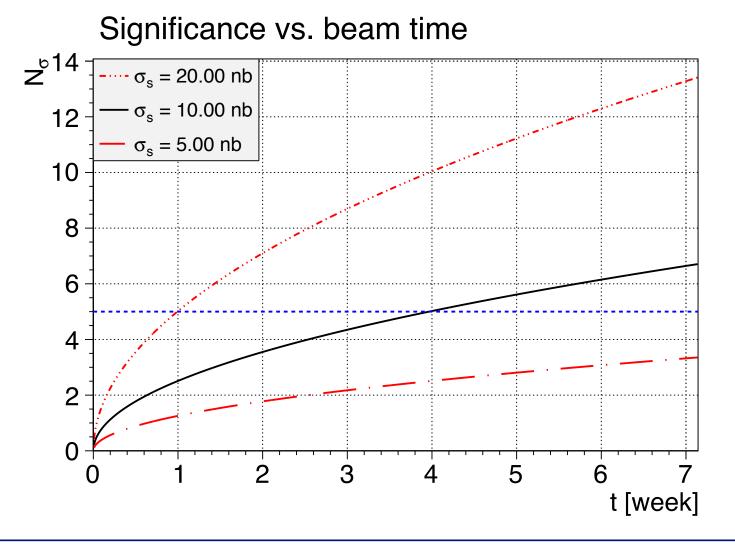
Statistics: 1 M signal evts, 1000 M DPM bkgrd evts

FoM: Significance, S/B, Efficiency

• Time needed to achieve 5σ significance = S / sqrt(S+B) (for the excl. pbarp system)

Significance (t) =
$$\sqrt{L \cdot t} \cdot \frac{\sigma_s \cdot \varepsilon_s \cdot f_{BR}}{\sqrt{\sigma_s \cdot \varepsilon_s \cdot f_{BR} + \sigma_b \cdot \varepsilon_b}}$$

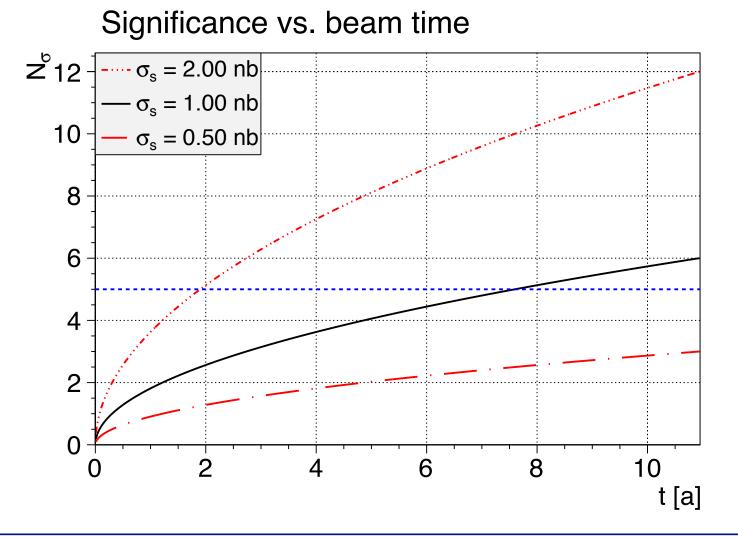
- Signal to Bkgd $S / B = \frac{\sigma_s \cdot \varepsilon_s \cdot f_{BR}}{\sigma_b \cdot \varepsilon_b}$
- Signal Efficiency ϵ_s



Proposed FoM: Significance

Example: $\eta_{c} + \pi^{-}\pi^{+} \rightarrow K^{+}K^{-}\pi^{0} + \pi^{-}\pi^{+}$ at 4.5 GeV

 $σ_s = ~10 \text{ nb}, σ_b = 60 \text{ mb}$ $f_{BR} = 3.5 \%, L = 2 \times 10^{32}$ $ε_s = 22.6\%, ε_b = 2.0 \times 10^{-6}$



Proposed FoM: Significance

Example: $\eta_{c} + \pi^{-}\pi^{+} \rightarrow K^{+}K^{-}\pi^{0} + \pi^{-}\pi^{+}$ at 4.5 GeV

 $σ_s = ~1 nb, σ_b = 60 mb$ $f_{BR} = 3.5 \%, L = 2 x 10^{32}$ $ε_s = 22.6\%, ε_b = 2.0 x 10^{-6}$

 $\sigma_s = 1 \text{ nb}, E_{cms} = 5.5 \text{ GeV}$

1nb	L/cms		1,0E+32 Full No FS No Emc Barrel No Disc DIRC No Barrel DIRC STT only Tracking																
F	detopt		Full			No FS		Nc	Emc Bai	rrel	N	o Disc Dll	RC	No	Barrel D	IRC	STT	only Trad	king
E_cm	mode	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA
	etac(2Kpi0) 2pi	701	0,000	✓	748	0,001	✓	1259	0,001	✓	1176	0,000	✓	1979	0,000	~	16402	0,000	✓
	etac(2Kpi0) 2pi0	291	0,002	✓	342	0,005	\checkmark	4928	0,001	✓	285	0,002	✓	273	0,002	\checkmark	1249	0,001	✓
	etac(2Kpi0) 2eta	118	0,020	✓	893	0,008	\checkmark	35472	0,001	✓	82	0,025	✓	243	0,008	✓	495	0,010	✓
	etac(2Kpi0) 2K	43	0,008	✓	27	0,073	~	73	0,009	✓	315	0,003	✓	148	0,004	\checkmark	297	0,013	\checkmark
	etac(KsKpi) 2pi	88	0,011	✓	45	0,043	✓	87	0,012	✓	296	0,005	✓	222	0,009	~	35452	0,001	✓
	etac(KsKpi) 2pi0	37	0,026	✓	91	0,023	\checkmark	198	0,016	×	61	0,032	✓	75	0,026	\checkmark	991	0,007	✓
	etac(KsKpi) 2eta	133	0,019	✓	1759	0,005	\checkmark	14200	0,002	✓	171	0,017	✓	133	0,019	✓	8878	0,002	✓
5.5	etac(KsKpi) 2K	28	0,069	✓	41	0,047	~	26	0,074	✓	79	0,025	✓	60	0,032	\checkmark	8878	0,002	\checkmark
5,5	Jpsi(2e) 2pi	7,6	0,26	✓	14	0,16	✓	10	0,19	✓	7,8	0,25	✓	8,0	0,24	~	57	0,034	✓
	Jpsi(2e) 2pi0	9,2	0,21	✓	19	0,10	✓	43	0,045	×	9,3	0,21	 ✓ 	10	0,20	✓	24	0,082	✓
	Jpsi(2e) 2eta	38	0,057	✓	146	0,019	\checkmark	1868	0,005	×	37	0,058	✓	38	0,051	✓	109	0,021	✓
	Jpsi(2e) 2K	7,2	0,27	✓	10	0,20	~	7,4	0,26	✓	7,2	0,27	✓	7,4	0,29	✓	67	0,029	\checkmark
	Jpsi(2mu) 2pi	6,3	0,31	✓	10	0,094	✓	7,5	0,26	✓	7,9	0,24	✓	7,8	0,28	~	50	0,039	✓
	Jpsi(2mu) 2pi0	6,4	0,30	✓	16	0,12	×	31	0,063	×	7,1	0,27	✓	7,2	0,27	✓	20	0,099	✓
	Jpsi(2mu) 2eta	24	0,082	✓	69	0,031	\checkmark	732	0,009	×	24	0,082	 ✓ 	24	0,082	✓	67	0,029	✓
	Jpsi(2mu) 2K	5,1	0,38	✓	6	0,31	✓	5,5	0,35	✓	5,3	0,37	✓	5,1	0,38	\checkmark	49	0,040	\checkmark

Time QA (days)	
green < 30 yellow < 365	red >= 365

S/B QA green > 1 yellow > 0.1 red <= 0.1

Dal QA ok < 1.5

Frank Nerling

Charmonium-like Exotics PWG - CM Dec 2016

05/12/2016

 $\sigma_s = 10 \text{ nb}, E_{cms} = 5.5 \text{ GeV}$

10nb	L/cms		1,0E+32 Full No FS No Emc Barrel No Disc DIRC No Barrel DIRC STT only Tracking																
F	detopt		Full			No FS		No	o Emc Ba	rrel	N	o Disc Dl	RC	No	Barrel D	IRC	STT	only Trac	cking
E_cm	mode	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA
	etac(2Kpi0) 2pi	7,0	0,004	✓	7,5	0,008	<	13	0,005	✓	12	0,003	<	20,00	0,002	✓	164	0,002	✓
	etac(2Kpi0) 2pi0	3,0	0,016	✓	6,1	0,045	✓	50	0,014	✓	2,9	0,017	✓	2,8	0,016	✓	13	0,013	✓
	etac(2Kpi0) 2eta	9,4	0,20	✓	28	0,078	✓	358	0,012	✓	7,9	0,25	✓	7,9	0,082	✓	20	0,099	✓
	etac(2Kpi0) 2K	1,4	0,079	✓	2,6	0,73	✓	2,5	0,086	✓	3,2	0,025	✓	2,4	0,041	✓	15	0,13	✓
	etac(KsKpi) 2pi	3,7	0,11	✓	4,5	0,43	~	4,1	0,12	✓	5,7	0,048	✓	7,5	0,086	✓	356	0,006	✓
	etac(KsKpi) 2pi0	3,7	0,26	✓	8,3	0,23	✓	12	0,16	×	6,1	0,32	✓	7,5	0,26	✓	28	0,070	✓
	etac(KsKpi) 2eta	10	0,19	✓	37	0,053	✓	145	0,019	✓	11	0,17	✓	10,00	0,19	✓	91	0,023	✓
5,5	etac(KsKpi) 2K	2,8	0,69	✓	4,1	0,47	✓	2,6	0,74	✓	7,7	0,25	✓	6,00	0,32	✓	91	0,023	\checkmark
5,5	Jpsi(2e) 2pi	0,8	2,6	 ✓ 	1,4	1,6	✓	1,0	1,9	✓	0,8	2,5	✓	0,8	2,4	 ✓ 	5,7	0,34	✓
	Jpsi(2e) 2pi0	0,9	2,1	 ✓ 	1,9	1,0	✓	4,3	0,44	×	0,9	2,1	✓	0,9	2,0	 ✓ 	2,3	0,82	✓
	Jpsi(2e) 2eta	3,8	0,57	 ✓ 	11	0,19	✓	40	0,054	×	3,7	0,58	✓	3,8	0,51	✓	9,1	0,21	✓
	Jpsi(2e) 2K	0,7	2,7	✓	1,0	2,0	\checkmark	0,7	2,6	✓	0,7	2,7	✓	0,7	2,9	✓	6,7	0,29	✓
	Jpsi(2mu) 2pi	0,6	3,1	✓	1,0	0,94	~	0,8	2,6	✓	0,8	2,4	~	0,8	2,8	✓	5,0	0,39	✓
	Jpsi(2mu) 2pi0	0,6	3,0	 ✓ 	1,5	1,2	×	3,1	0,63	×	0,7	2,7	✓	0,7	2,7	 ✓ 	2,0	0,99	✓
	Jpsi(2mu) 2eta	2,3	0,82	 ✓ 	6,9	0,31	\checkmark	25	0,086	×	2,3	0,82	✓	2,3	0,82	 ✓ 	6,7	0,29	✓
	Jpsi(2mu) 2K	0,5	3,8	✓	0,6	3,1	\checkmark	0,5	3,5	\checkmark	0,5	3,7	✓	0,5	3,8	✓	4,9	0,40	\checkmark

Time QA (days)	S/B QA
green < 30 yellow < 365 red >= 365	green > '

Dal QA ok < 1.5

Frank Nerling

Charmonium-like Exotics PWG - CM Dec 2016

1nb	L/cms			I,0E+30 Full No FS No Emc Barrel No Disc DIRC STT only Tracking												
E am	detopt		Full			No FS		No	Emc Ba	rrel	No	Disc DI	RC	STT	only Trac	cking
E_cm	mode	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA
	etac(2Kpi0) 2pi	423239	0,0001	\checkmark	466074	0,0001	✓	1E+06	0,0001	✓	559109	0,0001	\checkmark	4E+06	0,0001	\checkmark
	etac(2Kpi0) 2pi0	229605	0,0002	\checkmark	367916	0,0003	\checkmark	1E+07	0,0001	\checkmark	252394	0,0002	\checkmark	630019	0,0002	\checkmark
	etac(KsKpi) 2pi	4530	0,043	\checkmark	4295	0,045	\checkmark	7273	0,018	\checkmark	7349	0,026	\checkmark	2E+06	0,001	\checkmark
4,5	etac(KsKpi) 2pi0	5802	0,033	\checkmark	7349	0,026	\checkmark	63539	0,009	×	5421	0,036	\checkmark	189516	0,003	\checkmark
4,5	J/psi(2e) 2pi	756	0,26	\checkmark	1073	0,20	\checkmark	1232	0,16	\checkmark	750	0,26	\checkmark	3991	0,048	\checkmark
	J/psi(2e) 2pi0	911	0,21	\checkmark	2036	0,095	×	18151	0,016	×	920	0,21	\checkmark	1919	0,10	\checkmark
	J/psi(2mu) 2pi	783	0,25	\checkmark	1018	0,19	\checkmark	808	0,24	\checkmark	705	0,27	\checkmark	3326	0,058	\checkmark
	J/psi(2mu) 2pi0	715	0,27	×	1523	0,13	×	6047	0,032	×	795	0,24	×	1523	0,13	\checkmark
	etac(2Kpi0) 2pi	70136	0,0004	\checkmark	74815	0,0008	\checkmark	125854	0,0005	\checkmark	117629	0,0003	\checkmark	2E+06	0,0002	\checkmark
	etac(2Kpi0) 2pi0	29140	0,002	\checkmark	34175	0,005	\checkmark	492784	0,001	\checkmark	28460	0,002	\checkmark	124882	0,001	\checkmark
	etac(KsKpi) 2pi	8840	0,011	\checkmark	4530	0,043	\checkmark	8742	0,012	\checkmark	29633	0,005	\checkmark	4E+06	0,001	\checkmark
5,5	etac(KsKpi) 2pi0	3674	0,026	\checkmark	9064	0,023	\checkmark	19747	0,016	×	6124	0,032	\checkmark	99108	0,007	\checkmark
5,5	J/psi(2e) 2pi	756	0,26	\checkmark	1367	0,16	\checkmark	1003	0,19	\checkmark	780	0,25	\checkmark	5702	0,034	\checkmark
	J/psi(2e) 2pi0	915	0,21	\checkmark	1865	0,10	\checkmark	4338	0,045	×	933	0,21	\checkmark	2348	0,082	\checkmark
	J/psi(2mu) 2pi	628	0,31	\checkmark	1023	0,094	\checkmark	750	0,26	\checkmark	789	0,24	\checkmark	4989	0,039	\checkmark
	J/psi(2mu) 2pi0	642	0,30	\checkmark	1547	0,12	x	3070	0,063	×	705	0,27	\checkmark	1956	0,099	\checkmark

Time QA (days) green < 30 yellow < 365 red >= 365 S/B QA green > 1 yellow > 0.1 red <= 0.1

Frank Nerling

1nb	L/cms			I,0E+31 Full No FS No Emc Barrel No Disc DIRC STT only Tracking												
Eam	detopt		Full			No FS		No	Emc Bar	rrel	N	o Disc Dl	RC	STT	only Trac	king
E_cm	mode	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA
	etac(2Kpi0) 2pi	42324	0,0001	<	46607	0,0001	\checkmark	122059	0,0001	<	55911	0,0001	\checkmark	362845	0,0001	\checkmark
	etac(2Kpi0) 2pi0	22961	0,0002	\checkmark	36792	0,0003	\checkmark	1E+06	0,0001	\checkmark	25239	0,0002	\checkmark	63002	0,0002	\checkmark
	etac(KsKpi) 2pi	453	0,043	\checkmark	430	0,045	\checkmark	727	0,018	\checkmark	735	0,026	\checkmark	177361	0,001	\checkmark
4,5	etac(KsKpi) 2pi0	580	0,033	\checkmark	735	0,026	\checkmark	6354	0,009	×	542	0,036	\checkmark	18952	0,003	\checkmark
4,5	J/psi(2e) 2pi	76	0,26	\checkmark	107	0,20	\checkmark	123	0,16	\checkmark	75	0,26	\checkmark	399	0,048	\checkmark
	J/psi(2e) 2pi0	91	0,21	\checkmark	204	0,095	×	1815	0,016	×	92	0,21	\checkmark	192	0,10	\checkmark
	J/psi(2mu) 2pi	78	0,25	\checkmark	102	0,19	\checkmark	81	0,24	\checkmark	71	0,27	\checkmark	333	0,058	\checkmark
	J/psi(2mu) 2pi0	72	0,27	×	152	0,13	×	605	0,032	×	80	0,24	×	152	0,13	\checkmark
	etac(2Kpi0) 2pi	7014	0,0004	\checkmark	7482	0,0008	\checkmark	12585	0,0005	\checkmark	11763	0,0003	\checkmark	164015	0,0002	\checkmark
	etac(2Kpi0) 2pi0	2914	0,002	\checkmark	3417	0,005	\checkmark	49278	0,001	\checkmark	2846	0,002	\checkmark	12488	0,001	\checkmark
	etac(KsKpi) 2pi	884	0,011	\checkmark	453	0,043	\checkmark	874	0,012	\checkmark	2963	0,005	\checkmark	354515	0,001	\checkmark
5,5	etac(KsKpi) 2pi0	367	0,026	\checkmark	906	0,023	\checkmark	1975	0,016	×	612	0,032	\checkmark	9911	0,007	\checkmark
2,5	J/psi(2e) 2pi	76	0,26	\checkmark	137	0,16	\checkmark	100	0,19	✓	78	0,25	\checkmark	570	0,034	\checkmark
	J/psi(2e) 2pi0	92	0,21	\checkmark	187	0,10	\checkmark	434	0,045	×	93	0,21	\checkmark	235	0,082	\checkmark
	J/psi(2mu) 2pi	63	0,31	\checkmark	102	0,094	\checkmark	75	0,26	\checkmark	79	0,24	\checkmark	499	0,039	\checkmark
	J/psi(2mu) 2pi0	64	0,30	\checkmark	155	0,12	×	307	0,063	×	71	0,27	\checkmark	196	0,099	\checkmark

Time QA (days) green < 30 yellow < 365 red >= 365 S/B QA green > 1 yellow > 0.1 red <= 0.1

Frank Nerling

1nb	L/cms		1,0E+32 Full No FS No Emc Barrel No Disc DIRC STT only Tracking													
Eam	detopt		Full			No FS		No	Emc Bar	rrel	N	o Disc Dl	RC	STT	only Trac	king
E_cm	mode	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA
	etac(2Kpi0) 2pi	4232	0,0001	<	4661	0,0001	\checkmark	12206	0,0001	<	5591	0,0001	<	36285	0,0001	\checkmark
	etac(2Kpi0) 2pi0	2296	0,0002	\checkmark	3679	0,0003	\checkmark	141744	0,0001	\checkmark	2524	0,0002	\checkmark	6300	0,0002	\checkmark
	etac(KsKpi) 2pi	45	0,043	\checkmark	43	0,045	\checkmark	73	0,018	✓	74	0,026	\checkmark	17736	0,001	\checkmark
4,5	etac(KsKpi) 2pi0	58	0,033	\checkmark	74	0,026	\checkmark	635	0,009	×	54	0,036	\checkmark	1895	0,003	\checkmark
4,5	J/psi(2e) 2pi	7,6	0,26	\checkmark	10,7	0,20	\checkmark	12,3	0,16	\checkmark	7,5	0,26	\checkmark	40	0,048	\checkmark
	J/psi(2e) 2pi0	9,1	0,21	\checkmark	20,4	0,095	×	182	0,016	×	9,2	0,21	\checkmark	19,2	0,10	\checkmark
	J/psi(2mu) 2pi	7,8	0,25	\checkmark	10,2	0,19	\checkmark	8,1	0,24	\checkmark	7,1	0,27	\checkmark	33	0,058	\checkmark
	J/psi(2mu) 2pi0	7,2	0,27	×	15,2	0,13	×	61	0,032	×	8,0	0,24	×	15,2	0,13	\checkmark
	etac(2Kpi0) 2pi	701	0,0004	\checkmark	748	0,0008	\checkmark	1259	0,0005	\checkmark	1176	0,0003	\checkmark	16402	0,0002	\checkmark
	etac(2Kpi0) 2pi0	291	0,002	\checkmark	342	0,005	\checkmark	4928	0,001	\checkmark	285	0,002	\checkmark	1249	0,001	\checkmark
	etac(KsKpi) 2pi	88	0,011	\checkmark	45	0,043	\checkmark	87	0,012	\checkmark	296	0,005	\checkmark	35452	0,001	\checkmark
5,5	etac(KsKpi) 2pi0	37	0,026	\checkmark	91	0,023	\checkmark	198	0,016	×	61	0,032	✓	991	0,007	\checkmark
5,5	J/psi(2e) 2pi	7,6	0,26	\checkmark	13,7	0,16	\checkmark	10,0	0,19	✓	7,8	0,25	✓	57	0,034	\checkmark
	J/psi(2e) 2pi0	9,2	0,21	\checkmark	18,6	0,10	\checkmark	43	0,045	×	9,3	0,21	\checkmark	23,5	0,082	\checkmark
	J/psi(2mu) 2pi	6,3	0,31	\checkmark	10,2	0,094	\checkmark	7,5	0,26	\checkmark	7,9	0,24	\checkmark	50	0,039	\checkmark
	J/psi(2mu) 2pi0	6,4	0,30	\checkmark	15,5	0,12	×	31	0,063	×	7,1	0,27	\checkmark	19,6	0,099	\checkmark

Time QA (days) green < 30 yellow < 365 red >= 365 S/B QA green > 1 yellow > 0.1 red <= 0.1

Frank Nerling

1nb	L/cms			2,0E+32 Full No FS No Emc Barrel No Disc DIRC STT only Tracking												
E cm	detopt		Full			No FS		No	Emc Bai	rrel	N	o Disc Dl	RC	STT	only Trac	king
E_cm	mode	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA
	etac(2Kpi0) 2pi	2116	0,0001	\checkmark	2330	0,0001	<	6103	0,0001	✓	2796	0,0001	<	18142	0,0001	\checkmark
	etac(2Kpi0) 2pi0	1148	0,0002	\checkmark	1839,6	0,0003	\checkmark	70872	0,0001	✓	1262	0,0002	\checkmark	3150	0,0002	\checkmark
	etac(KsKpi) 2pi	22,6	0,043	\checkmark	21,5	0,045	\checkmark	36	0,018	\checkmark	37	0,026	\checkmark	8868	0,001	\checkmark
4,5	etac(KsKpi) 2pi0	29,0	0,033	\checkmark	37	0,026	\checkmark	318	0,009	×	27,1	0,036	\checkmark	948	0,003	\checkmark
4,5	J/psi(2e) 2pi	3,8	0,26	\checkmark	5,4	0,20	\checkmark	6,2	0,16	✓	3,8	0,26	\checkmark	20,0	0,048	\checkmark
	J/psi(2e) 2pi0	4,6	0,21	\checkmark	10,2	0,095	×	91	0,016	×	4,6	0,21	✓	9,6	0,10	\checkmark
	J/psi(2mu) 2pi	3,9	0,25	\checkmark	5,1	0,19	\checkmark	4,0	0,24	✓	3,5	0,27	\checkmark	16,6	0,058	\checkmark
	J/psi(2mu) 2pi0	3,6	0,27	×	7,6	0,13	×	30	0,032	×	4,0	0,24	×	7,6	0,13	\checkmark
	etac(2Kpi0) 2pi	351	0,0004	✓	374	0,0008	<	629	0,0005	\checkmark	588	0,0003	<	8201	0,0002	\checkmark
	etac(2Kpi0) 2pi0	146	0,002	\checkmark	171	0,005	\checkmark	2464	0,001	\checkmark	142	0,002	\checkmark	624	0,001	\checkmark
	etac(KsKpi) 2pi	44	0,011	\checkmark	22,6	0,043	\checkmark	44	0,012	\checkmark	148	0,005	\checkmark	17726	0,001	\checkmark
55	etac(KsKpi) 2pi0	18,4	0,026	\checkmark	45	0,023	\checkmark	99	0,016	×	31	0,032	\checkmark	496	0,007	\checkmark
5 , 5	J/psi(2e) 2pi	3,8	0,26	\checkmark	6,8	0,16	\checkmark	5,0	0,19	✓	3,9	0,25	\checkmark	28,5	0,034	\checkmark
	J/psi(2e) 2pi0	4,6	0,21	\checkmark	9,3	0,10	\checkmark	21,7	0,045	×	4,7	0,21	✓	11,7	0,082	\checkmark
	J/psi(2mu) 2pi	3,1	0,31	\checkmark	5,1	0,094	\checkmark	3,8	0,26	\checkmark	3,9	0,24	\checkmark	24,9	0,039	\checkmark
	J/psi(2mu) 2pi0	3,2	0,30	\checkmark	7,7	0,12	×	15,4	0,063	×	3,5	0,27	\checkmark	9,8	0,099	\checkmark

Time QA (days) green < 30 yellow < 365 red >= 365 S/B QA green > 1 yellow > 0.1 red <= 0.1

Frank Nerling

10nb	L/cms		I,0E+30 Full No FS No Emc Barrel No Disc DIRC STT only Tracking													
E am	detopt		Full			No FS		No	Emc Ba	rrel	N	o Disc Dl	RC	STT	only Trac	cking
E_cm	mode	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA
	etac(2Kpi0) 2pi	4237	0,001	<	4666	0,001	\checkmark	12217	0,001	<	5595	0,001	<	36314	0,001	\checkmark
	etac(2Kpi0) 2pi0	2301	0,003	\checkmark	3690	0,003	\checkmark	141930	0,002	\checkmark	2529	0,002	\checkmark	6313	0,002	\checkmark
	etac(KsKpi) 2pi	453	0,43	✓	430	0,45	\checkmark	525	0,18	✓	735	0,26	✓	17922	0,012	\checkmark
4,5	etac(KsKpi) 2pi0	580	0,33	\checkmark	735	0,26	\checkmark	2205	0,088	×	542	0,36	\checkmark	2205	0,029	\checkmark
4,5	J/psi(2e) 2pi	76	2,6	\checkmark	107	2,0	\checkmark	123	1,6	\checkmark	75	2,6	\checkmark	399	0,48	\checkmark
	J/psi(2e) 2pi0	91	2,1	\checkmark	204	0,95	×	1174	0,16	×	92	2,1	\checkmark	192	1,0	\checkmark
J	J/psi(2mu) 2pi	78	2,5	\checkmark	102	1,9	\checkmark	81	2,4	\checkmark	71	2,7	\checkmark	333	0,58	\checkmark
	J/psi(2mu) 2pi0	72	2,7	×	152	1,3	×	605	0,32	x	80	2,4	×	152	1,3	\checkmark
	etac(2Kpi0) 2pi	704	0,004	<	754	0,008	\checkmark	1264	0,005	<	1179	0,003	<	16435	0,002	\checkmark
	etac(2Kpi0) 2pi0	296	0,016	\checkmark	612	0,045	\checkmark	4990	0,014	\checkmark	289	0,017	\checkmark	1264	0,013	\checkmark
	etac(KsKpi) 2pi	367	0,11	✓	453	0,43	\checkmark	408	0,12	✓	570	0,048	✓	35638	0,006	\checkmark
5,5	etac(KsKpi) 2pi0	367	0,26	\checkmark	827	0,23	\checkmark	1225	0,16	x	612	0,32	✓	2756	0,070	\checkmark
5,5	J/psi(2e) 2pi	76	2,6	\checkmark	137	1,6	\checkmark	100	1,9	\checkmark	78	2,5	\checkmark	570	0,34	\checkmark
	J/psi(2e) 2pi0	92	2,1	\checkmark	187	1,0	\checkmark	434	0,44	×	93	2,1	\checkmark	235	0,82	\checkmark
	J/psi(2mu) 2pi	63	3,1	\checkmark	102	0,94	\checkmark	75	2,6	\checkmark	79	2,4	\checkmark	499	0,39	\checkmark
	J/psi(2mu) 2pi0	64	3,0	\checkmark	155	1,2	×	307	0,63	×	71	2,7	\checkmark	196	0,99	\checkmark

Time QA (days) green < 30 yellow < 365 red >= 365 S/B QA green > 1 yellow > 0.1 red <= 0.1

Frank Nerling

10nb	L/cms		1,0E+31													
E cm	detopt	Full			No FS			No Emc Barrel			N	o Disc Dl	RC	STT only Tracking		
E_cm	mode	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA
	etac(2Kpi0) 2pi	424	0,001	<	467	0,001	✓	1222	0,001	<	560	0,001	✓	3631	0,001	✓
	etac(2Kpi0) 2pi0	230	0,003	\checkmark	369	0,003	\checkmark	14193	0,002	✓	253	0,002	\checkmark	631	0,002	\checkmark
	etac(KsKpi) 2pi	45	0,43	✓	43	0,45	\checkmark	53	0,18	✓	74	0,26	✓	1792	0,01	✓
4,5	etac(KsKpi) 2pi0	58	0,33	\checkmark	74	0,26	\checkmark	221	0,09	×	54	0,36	\checkmark	221	0,03	\checkmark
4,5	J/psi(2e) 2pi	7,6	2,6	\checkmark	10,7	2,0	\checkmark	12,3	1,6	\checkmark	7,5	2,6	\checkmark	40	0,48	\checkmark
	J/psi(2e) 2pi0	9,1	2,1	\checkmark	20,4	0,95	×	117	0,16	×	9,2	2,1	\checkmark	19,2	1,0	\checkmark
	J/psi(2mu) 2pi	7,8	2,5	\checkmark	10,2	1,9	\checkmark	8,1	2,4	\checkmark	7,1	2,7	\checkmark	33	0,58	\checkmark
	J/psi(2mu) 2pi0	7,2	2,7	×	15,2	1,3	×	61	0,32	×	8,0	2,4	×	15,2	1,3	\checkmark
	etac(2Kpi0) 2pi	70	0,004	\checkmark	75	0,008	\checkmark	126	0,005	\checkmark	118	0,003	\checkmark	1644	0,002	\checkmark
	etac(2Kpi0) 2pi0	29,5	0,016	\checkmark	61	0,045	\checkmark	499	0,014	✓	28,9	0,017	\checkmark	126	0,013	\checkmark
	etac(KsKpi) 2pi	37	0,11	✓	45	0,43	\checkmark	41	0,12	✓	57	0,048	\checkmark	3564	0,006	\checkmark
5,5	etac(KsKpi) 2pi0	37	0,26	\checkmark	83	0,23	\checkmark	123	0,16	×	61	0,32	\checkmark	276	0,070	\checkmark
5,5	J/psi(2e) 2pi	7,6	2,6	\checkmark	13,7	1,6	\checkmark	10,0	1,9	✓	7,8	2,5	\checkmark	57	0,34	✓
	J/psi(2e) 2pi0	9,2	2,1	\checkmark	18,6	1,0	\checkmark	43	0,44	×	9,3	2,1	\checkmark	23,5	0,82	\checkmark
	J/psi(2mu) 2pi	6,3	3,1	\checkmark	10,2	0,94	\checkmark	7,5	2,6	\checkmark	7,9	2,4	\checkmark	50	0,39	\checkmark
	J/psi(2mu) 2pi0	6,4	3,0	\checkmark	15,5	1,2	x	31	0,63	×	7,1	2,7	\checkmark	19,6	0,99	\checkmark

Time QA (days) green < 30 yellow < 365 red >= 365 S/B QA green > 1 yellow > 0.1 red <= 0.1

Frank Nerling

10nb	L/cms	1,0E+32														
E cm	detopt	Full			No FS			No Emc Barrel			No	o Disc Dl	RC	STT only Tracking		
E_cm	mode	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA
	etac(2Kpi0) 2pi	42	0,001	✓	47	0,001	<	122	0,001	✓	56	0,001	✓	363	0,001	\checkmark
	etac(2Kpi0) 2pi0	23,0	0,003	\checkmark	37	0,003	\checkmark	1419	0,002	\checkmark	25,3	0,002	\checkmark	63	0,002	\checkmark
	etac(KsKpi) 2pi	4,5	0,43	\checkmark	4,3	0,45	\checkmark	5,2	0,18	\checkmark	7,3	0,26	\checkmark	179	0,01	\checkmark
4,5	etac(KsKpi) 2pi0	5,8	0,33	✓	7,3	0,26	✓	22,0	0,09	×	5,4	0,36	✓	22,0	0,03	\checkmark
4,5	J/psi(2e) 2pi	0,8	2,6	\checkmark	1,1	2,0	\checkmark	1,2	1,6	\checkmark	0,8	2,6	\checkmark	4,0	0,48	\checkmark
	J/psi(2e) 2pi0	0,9	2,1	\checkmark	2,0	0,95	×	11,7	0,16	×	0,9	2,1	\checkmark	1,9	1,0	\checkmark
	J/psi(2mu) 2pi	0,8	2,5	\checkmark	1,0	1,9	\checkmark	0,8	2,4	\checkmark	0,7	2,7	\checkmark	3,3	0,58	\checkmark
	J/psi(2mu) 2pi0	0,7	2,7	×	1,5	1,3	×	6,0	0,32	×	0,8	2,4	×	1,5	1,3	\checkmark
	etac(2Kpi0) 2pi	7,0	0,004	✓	7,5	0,008	~	12,6	0,005	✓	11,8	0,003	✓	164	0,002	\checkmark
	etac(2Kpi0) 2pi0	3,0	0,02	\checkmark	6,1	0,05	\checkmark	50	0,01	\checkmark	2,9	0,02	\checkmark	12,6	0,01	\checkmark
	etac(KsKpi) 2pi	3,7	0,11	✓	4,5	0,43	✓	4,1	0,12	\checkmark	5,7	0,05	✓	356	0,01	\checkmark
5,5	etac(KsKpi) 2pi0	3,7	0,26	✓	8,3	0,23	\checkmark	12,2	0,16	×	6,1	0,32	\checkmark	27,6	0,07	\checkmark
5,5	J/psi(2e) 2pi	0,8	2,6	\checkmark	1,4	1,6	\checkmark	1,0	1,9	\checkmark	0,8	2,5	\checkmark	5,7	0,34	\checkmark
	J/psi(2e) 2pi0	0,9	2,1	\checkmark	1,9	1,0	\checkmark	4,3	0,44	×	0,9	2,1	\checkmark	2,3	0,82	\checkmark
	J/psi(2mu) 2pi	0,6	3,1	\checkmark	1,0	0,94	\checkmark	0,8	2,6	\checkmark	0,8	2,4	\checkmark	5,0	0,39	\checkmark
	J/psi(2mu) 2pi0	0,6	3,0	\checkmark	1,5	1,2	×	3,1	0,63	×	0,7	2,7	\checkmark	2,0	0,99	\checkmark

Time QA (days) green < 30 yellow < 365 red >= 365 S/B QA green > 1 yellow > 0.1 red <= 0.1

Frank Nerling

10nb	L/cms	2,0E+32														
E cm	detopt	Full			No FS			No Emc Barrel			N	o Disc Dl	RC	STT only Tracking		
E_cm	mode	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA
	etac(2Kpi0) 2pi	21,2	0,001	\checkmark	23,3	0,001	✓	61	0,001	✓	28,0	0,001	\checkmark	182	0,001	\checkmark
	etac(2Kpi0) 2pi0	11,5	0,003	\checkmark	18,5	0,003	\checkmark	710	0,002	✓	12,6	0,002	\checkmark	32	0,002	\checkmark
	etac(KsKpi) 2pi	2,3	0,43	\checkmark	2,1	0,45	\checkmark	2,6	0,18	✓	3,7	0,26	\checkmark	90	0,01	\checkmark
4,5	etac(KsKpi) 2pi0	2,9	0,33	\checkmark	3,7	0,26	\checkmark	11,0	0,09	×	2,7	0,36	\checkmark	11,0	0,03	\checkmark
4,5	J/psi(2e) 2pi	0,4	2,6	\checkmark	0,5	2,0	\checkmark	0,6	1,6	\checkmark	0,4	2,6	\checkmark	2,0	0,48	\checkmark
	J/psi(2e) 2pi0	0,5	2,1	\checkmark	1,0	0,95	×	5,9	0,16	×	0,5	2,1	\checkmark	1,0	1,0	\checkmark
	J/psi(2mu) 2pi	0,4	2,5	\checkmark	0,5	1,9	\checkmark	0,4	2,4	✓	0,4	2,7	\checkmark	1,7	0,58	\checkmark
	J/psi(2mu) 2pi0	0,4	2,7	×	0,8	1,3	×	3,0	0,32	×	0,4	2,4	×	0,8	1,3	\checkmark
	etac(2Kpi0) 2pi	3,5	0,004	\checkmark	3,8	0,008	✓	6,3	0,005	✓	5,9	0,003	\checkmark	82	0,002	\checkmark
	etac(2Kpi0) 2pi0	1,5	0,02	\checkmark	3,1	0,05	\checkmark	24,9	0,01	✓	1,4	0,02	\checkmark	6,3	0,01	\checkmark
	etac(KsKpi) 2pi	1,8	0,11	\checkmark	2,3	0,43	\checkmark	2,0	0,12	✓	2,9	0,05	\checkmark	178	0,01	\checkmark
5,5	etac(KsKpi) 2pi0	1,8	0,26	\checkmark	4,1	0,23	\checkmark	6,1	0,16	×	3,1	0,32	\checkmark	13,8	0,07	\checkmark
5,5	J/psi(2e) 2pi	0,4	2,6	\checkmark	0,7	1,6	\checkmark	0,5	1,9	✓	0,4	2,5	\checkmark	2,9	0,34	\checkmark
	J/psi(2e) 2pi0	0,5	2,1	\checkmark	0,9	1,0	\checkmark	2,2	0,44	×	0,5	2,1	\checkmark	1,2	0,82	\checkmark
	J/psi(2mu) 2pi	0,3	3,1	\checkmark	0,5	0,94	\checkmark	0,4	2,6	\checkmark	0,4	2,4	\checkmark	2,5	0,39	\checkmark
	J/psi(2mu) 2pi0	0,3	3,0	\checkmark	0,8	1,2	×	1,5	0,63	×	0,4	2,7	\checkmark	1,0	0,99	\checkmark

Time QA (days) green < 30 yellow < 365 red >= 365 S/B QA green > 1 yellow > 0.1 red <= 0.1

Frank Nerling