Light Meson Spectroscopy at Phase-One

Marc Pelizäus Ruhr-Universität Bochum

Charmonium

- Elisa Fioravanti stepped down as convenor of the Charmonium PWG
 interim colution: Frank Norling and Mara Polizaoua
 - interim solution: Frank Nerling and Marc Pelizaeus
- Important topics for phase-one physics
- Update on studies covered in the Physics Performance Report
 - h_c width measurement (someone need to take over work started by Dima Melnychuk)
 - $-\chi_{cJ}$ angular distributions
- New topic utilizing full simulation
 - $-h_c$ in hadrons, i.e. 3, 5, and 7 pions
 - high spin states, e.g. narrow ${}^{3}D_{2}$ state

Light Meson Spectrum

Additional color-less states: Color-less $q\bar{q}$ states (q = u, d, s) Multipletts of $q\bar{q}$ mesons with same J^{PC} • Glueballs: gg, ggg • Hybrids: qqg Tetraquarks: (qq)(qq) 3000 3^{-+} 2500 m/MeV2000 $1^{-+} 0^{+-} 2^{+-}$ 1500 $q\bar{q} S$ 1^{+-} 0^{++} 1^{++} 2^{++} 3^{++} 4^{++} 3^{+-} $q\bar{q} P$ аā 1000 $q\bar{q} G$ $\hat{q}\bar{q}g?$ 0^{-} $-4^{--}2^{-+}4^{-+}$

J. J. Dudek, Phys. Rev. D84 (2011) 074023

Light Mesons in pp Annihilation at PANDA

- Antiproton-proton annihilation
 - huge cross sections for light meson production: 100 nb ... 10 μb
 - gluon rich processes \rightarrow production of glueballs and hybrids
- Access in formation to
 - neutral resonances with m > 2.25 GeV/ c^2 and
 - non-exotic quantum numbers
- Access in production to all resonances with
 - at least one recoil meson and
 - variable center-of-mass energy (\rightarrow tunable phasespace)
- Many broad and overlapping states
 - requires (often) partial wave analysis techniques to identify resonances

Search for glueballs in $\Phi\Phi$

- p̄p → ΦΦ studied in Physics Preformance Report [K. Goetzen]
- Study of narrow f_J(2230) previously reported by MARK III and BES II
 - outdated, since this state is excluded by Babar and BES III with superior statistics
 - not accessible in formation at HESR
- Potential: Scan above 2.25 GeV
 - Jetset (1998): cross section >100x larger than expected from OZI rule → gluonic component?
 - broad $f_2(2300)$ and $f_2(2330)$ glueball candidates observed in πN
- Need an update on this topic

Jetset, Phys. Rev. D 57, 5370 (1998)

Glueball Studies

- Studies performed for the scrutiny report
 - focus on feasibility and performance for 6 different detector options
 - carried out in fast simulation
- Study of glueball production in $\overline{p}p \rightarrow K^+K^-\pi^0$, $K^+K^-\pi^0\pi^0$ and $\Phi\Phi\pi^0$
 - assuming cross section of 10 nb (including decays to final state)
 - background cross sections 50 to 80 mb
- "Light" glueball m = 2400 MeV/ c^2 (could be 2⁺⁺ or 0⁻⁺)
 - E_{CMS} = 2.57 GeV and 5.47 GeV
 - could be broad, study final states w/o intermediate resonances
- "Heavy" glueball m = 3900 MeV/c²
 - E_{CMS} = 5.47 GeV
 - could be narrow, assume $\Gamma = 10 \text{ MeV}$
 - search for narrow signal in production

Glueball Studies

Light glueball at E_{CMS} = 2.57 GeV

Light / heavy glueball E_{CMS} = 5.47 GeV

[Malte Albrecht]

Phase-one luminosity: 800 ... 8000 / d reconstructed signal events depending on channel

- Y(2175)→Φf₀(980) observed in ISR events e⁺e⁻ → γ_{ISR}K⁺K⁻π⁺π⁻
 m ~ 2175 MeV/c²; Γ~ 60 MeV
- Confirmed in J/ψ→Y(2175)η
 [BES II and BES III]
- Similar: Y(4260) → J/ψ f₀(980) also observed in ISR events
- Is Y(2175) a light analogue to the Y(4260)?

BaBar, Phys.Rev.D74, 091103 (2006)

Y(2175) Studies

- $\bar{p}p \rightarrow Y(2175)\pi\pi, Y(2175)\pi^0$ at E_{CMS}= 3 GeV
 - Y(2175) reconstructed in $\Phi\pi^{+}\pi^{-}$ and $\Phi\pi^{0}\pi^{0}$
 - assumed signal cross section: 100 nb
 - background cross section: 70 mb

Beam-time to record 1000 reconstructed events in the $\Phi\pi^{*}\pi^{-}\pi^{0}$ final state

	$f_{BR} = 5 \%$	$f_{BR} = 10 \%$	$f_{BR} = 30 \%$
$L = 2 \cdot 10^{30}$	99.5 d	24.9 d	2.8 d
$L = 2 \cdot 10^{31}$	9.95 d	(2.49 d)	0.28 h
$L = 2 \cdot 10^{32}$	0.995 d	0.249 d	0.028 h

[Ch. Motzko]

FastSim, full detector setup

Phase-one luminosity: 200 / d reconstructed signal events

Recent Observation of $a_1(1420)$ at Compass

- Compass: Observation of a new axial-vector meson in diffractive 3π dissociation (m~1414 MeV and Γ~153 MeV)
 - 46 x 10⁶ events analyzed
 - 88 waves fitted
- Iso-spin partner of f₁(1420)?
- a₁(1420) and f₁(1420) could be KKπ molecules
- f₁(1420) observed in
 p̄p → K⁰K⁻π⁺π⁺π⁻

Phase-one: 800 M / d produced 4π events

Compass, Phys. Rev. Lett. 115, 082001 (2015)

Plans

- Full simulation studies
 - − Y(2175) → Φππ in $\overline{p}p$ → Y(2175)ππ, Y(2175) $π^0$
 - − energy scan $\overline{p}p \rightarrow ΦΦ$
 - light glueball $G \rightarrow \Phi \Phi$, $K\overline{K}$, $K\overline{K}\pi$ in $\overline{p}p \rightarrow G\pi^0$, $G\eta$, $G\pi\pi$
 - − $a_1(1420) \rightarrow 3\pi$ in $\bar{p}p \rightarrow 4\pi$, 5π

Gππ

increasing

https://panda-wiki.gsi.de/foswiki/bin/view/PhysicsCmt/PhysicsAnalysisActivities

- Include realistic backgrounds
- Address feasibility of partial wave analyses

Summary

- Light meson spectroscopy at PANDA
 - large production cross sections
 - gluon-rich processes (glueballs, hybrids)
- Feasibility studies
 - full simulation with realistic background estimations
 - addressing partial wave analyses
 - prioritized list of channels
- Analysts are highly welcome to contribute !