Spin Observable Measurements in $\overline{Y}Y$ Reactions

Walter Ikegami Andersson

 $\label{eq:constraint} \begin{array}{c} \text{Uppsala University} \\ \text{on behalf of the } \overline{P}ANDA \mbox{ collaboration} \end{array}$

PANDA collaboration meeting December 05-09, 2016

Outline

- Spin observables
 - Channels to be studied
 - Accessible observables
 - Analysis methods
- $\overline{\Lambda}\Lambda$ @ 1.642 GeV/c
 - Efficiencies
 - Acceptance functions
- Outlook

Hyperon channels accessible with PANDA

Why antihyperon-hyperon production?

• $\overline{p}p \to \overline{\Lambda}\Lambda$

- Measured before @ LEAR
- Comparison of polarisation & spin correlation

• $\overline{p}p \rightarrow \overline{\Xi}^+ \Xi^-$

- Scarce data
- Potential to measure @ 7.0 GeV/c
- BR($\Lambda \rightarrow p\pi^{-}$) = 64%
- BR($\Xi^- \rightarrow \Lambda \pi$) ≈ 100 %

Spin observables in $\overline{p}p \to \overline{Y}Y$

Spin observables can be used to test theoretical model. Angular distribution related to

$$I \propto \sum_{\mu,\nu=0}^{3} \sum_{k,l=0}^{3} \overline{\alpha} \alpha \chi_{kl\mu\nu} P_{k}^{B} P_{l}^{T} \overline{k}_{\mu} k_{\nu}$$

With unpolarised beam and unpolarised target, differential cross section χ_{0000} , polarisation $\chi_{00\mu0} = P_{\overline{i}}$, $\chi_{000\nu} = P_i$ and the spin correlations $\chi_{00\mu\nu} = C_{ij}$ are accessible.

Polarisation

- 3 polarisation parameters for spin-¹/₂ hyperons: P_x, P_y, P_z
- $P_x = P_z = 0$ due to strong production
- $P_y = P_{\overline{y}}$ due to rotational invariance

Spin correlation

- 9 spin correlation parameters for spin-¹/₂ hyperons: C_{i,j}
- $C_{xy} = C_{yx} = C_{yz} = C_{zy} = 0$ due to strong production
- $C_{xz} = C_{zx}$ due to rotational invariance

Spin observables in $\overline{p}p \to \overline{Y}Y$

$$\hat{z} = rac{ec{p}_{\Lambda}}{ec{p}_{\Lambda}ec{}}, \hat{y} = rac{ec{p}_i imes ec{p}_f}{ec{p}_i imes ec{p}_fec{}}, \hat{x} = \hat{y} imes \hat{z}$$

Polarisation

Proton angular distribution:

$$I(heta_{
ho}) \propto rac{1}{4\pi}(1+lpha {m P_{m Y}}\cos heta_{
ho})$$

 $\overline{\alpha}, \alpha$ - decay asymmetry parameter

Spin correlation

Nucleon angular distribution:

$$I(heta_i, heta_j) \propto rac{1}{16\pi^2}(1+$$

$$\overline{\alpha}\alpha\sum_{i,j} C_{ij}\cos\theta_i\cos\theta_j)$$

Reconstructing the Spin Observables

Spin observables can be extracted using Method of Moments:

$$\langle \cos \theta_y \rangle = \langle \mathbf{k}_y \rangle = \int_{-1}^1 \int_{-1}^1 I(\mathbf{k}_y, \mathbf{k}_{\overline{y}}) \times \mathbf{k}_y d\mathbf{k}_y d\mathbf{k}_{\overline{y}}$$

Polarisation and Spin Correlation is given by:

$$P_{y} = \frac{3}{\alpha} \langle k_{y} \rangle = \frac{3}{\alpha} \frac{\sum_{m=1}^{N} \frac{k_{y,m}}{A(k_{y,m})}}{\sum_{m=1}^{N} \frac{1}{A(k_{y,m})}}$$
$$C_{ij} = \frac{9}{\overline{\alpha}\alpha} \langle \overline{k}_{i} k_{j} \rangle = \frac{9}{\alpha \overline{\alpha}} \frac{\sum_{m=1}^{N} \frac{\overline{k}_{i,m} k_{j,m}}{A(\overline{k}_{i,m}, k_{j,m})}}{\sum_{m=1}^{N} \frac{1}{A(\overline{k}_{i,m}, k_{j,m})}}$$

Erik Thomé, Elisabetta Perotti, Uppsala University

Reconstructing the Spin Observables

If $\cos \theta_y$ is symmetric around 0 i.e.

$$A_{Y}(\cos \theta_{y}) = A_{Y}(-\cos \theta_{y})$$
$$A_{\overline{Y}}(\cos \theta_{\overline{y}}) = A_{Y}(-\cos \theta_{\overline{y}}),$$

the spin observables are obtainable without acceptance correction:

$$P = \frac{1}{\alpha} \frac{\langle k_y \rangle}{\langle k_y^2 \rangle}$$

$$C_{ij} = \frac{1}{\alpha \overline{\alpha}} \frac{\langle \overline{k}_i k_j \rangle}{\langle \overline{k}_i^2 \rangle \langle k_j^2 \rangle}, i, j = x, z$$

$$C_{yy} = \frac{1}{\alpha \overline{\alpha}} \frac{\langle \overline{k}_y k_y \rangle - \langle \overline{k}_y \rangle \langle k_y \rangle}{\langle \overline{k}_y^2 \rangle \langle k_y^2 \rangle}$$

Simulation study

Simulation study of $\overline{p}p \to \overline{\Lambda}\Lambda$

Simulation parameters

- 482000 $\overline{p}p \rightarrow \overline{\Lambda}\Lambda$ events
- Forward-peaking distribution
- Antiproton beam $p_{\overline{p}} = 1.642$ GeV/c
- Full PANDA Detector setup
- Ideal Pattern Recognition
- Ideal Particle Identification

Event reconstruction

Event selection:

- Combine $p\pi^-$, $\overline{p}\pi^+$
- Select $|m_{\Lambda} M(p\pi^-)| < 0.1$ GeV
- Vertex & Mass fit Select combination based on χ^2
- Reject candidate if P(Vtx) < 0.001
- Tree fit

Reconstruction Efficiencies

Ideal tracking task: PndSttMvdGemTrackingIdeal.cxx

```
for(candit=candlist.begin(); candit!=candlist.end(); ++candit) {
239
240
        PndTrackCand* tcand=candit->second;
241
        trackID=candit->first:
     if(!tcand) {
242
          if(fVerbose>3) Warning("Exec", "Have no candidate at %i", trackID);
243
244
          continue;
245
        3
246
        if( tcand->GetNHits() < 3 ) continue;
```

Ideal PR requirement for track: 3 hits from any detector

Track	Efficiency (%)	Particle	Efficiency (%)
π^+	81.3	Λ	54.4
π^{-}	83.4	$\overline{\Lambda}$	52.9
р	99	<u></u> ₽p	13.4
\overline{p}	75.8		

Reconstruction Efficiencies

Acceptance Functions

 $\cos \theta_x$

Acceptance Functions

Acueio 100.16 0.14 0.12 χ^2 / ndf 84.84 / 45 p0 0.1522 ± 0.0011 0. p1 0.03955 ± 0.00245 p2 -0.05381± 0.00667 0.08 p3 -0.02712 ± 0.00366 0.01943 ± 0.00730 n4 0.06 0.04 0.02 0 4 0.6 0.8 1 Cos θ, Decay Frame -0.6 0.2

 $\cos \theta_z$

 $\cos \theta_{\overline{z}}$

Acceptance Functions

 $\cos\theta_y$

Outlook

- Performance check of analysis tools:
 - Benchmarking
 - DecayTreeFitter as alternative?
- Realistic PID
- Background studies
- Analysis of $\overline{p}p \to \overline{\Xi}\Xi$
 - Reproduce Erik Thomé's result @ 4.0 GeV/c
 - Study feasibility @ 7.0 GeV/c (X(3872) threshold)
- Efficiency studies of $\overline{p}p \to \overline{\Omega}\Omega$

Outlook

- Performance check of analysis tools:
 - Benchmarking
 - DecayTreeFitter as alternative?
- Realistic PID
- Background studies
- Analysis of $\overline{p}p \to \overline{\Xi}\Xi$
 - Reproduce Erik Thomé's result @ 4.0 GeV/c
 - Study feasibility @ 7.0 GeV/c (X(3872) threshold)
- Efficiency studies of $\overline{p}p \to \overline{\Omega}\Omega$

Thank you for your attention!

Hyperon production $\overline{p}p \rightarrow \overline{Y}Y$

Figure: $\overline{p}p \to \overline{Y}Y$ in quark-gluon picture (left) and in Hadron picture (right).

Hyperons: Spin observables in $\overline{p}p \rightarrow \overline{Y}Y$

Polarised Particle	None	Beam	Target	Both
None	<i>I</i> 0000	A _{i000}	A_{0j00}	A_{ij00}
Scattered	$P_{00\mu0}$	$D_{i0\mu0}$	$K_{0j\mu0}$	$M_{ij\mu0}$
Recoil	$P_{000\nu}$	$K_{i00\nu}$	$D_{0j0\nu}$	$N_{ij0\nu}$
Both	$C_{00\mu\nu}$	$C_{i0\mu\nu}$	$C_{0j\mu\nu}$	$C_{C_{ij\mu\nu}}$

• In $\overline{p}p \to \overline{Y}Y$ there are 256 spin variables in total

Accessible hyperons at $\overline{P}ANDA$

