Status of the Pellet Target

M.Büscher, A.Gerasimov, V.Chernetsky, <u>P.Fedorets</u>, A.Dolgolenko, P.Balanutsa, L.Gusev, S.Mineev, S.Podchasky, I.Tarasenko, V.Demekhin, S.Makagonov, D.Bogachenko, V. Silaev

Tests of target prototype in ITEP

Main goals of tests:

- optimization of temperature distribution for stable jet production
- investigation of nozzle clogging
- dependence of jet from operation regimes

Status: jet and droplet production in the triple point chamber

New design of the condenser

Goal: optimization of temperature distribution for stable jet production

Status: first cold tests with new condenser in November

Optimization of cold transfer lines

better cold transfer from the cold head to the condenser unit

new transfer lines mounted

old transfer lines

New piezo generator and new fixing of nozzle

Goal: more effective operation of the generator

Investigation of nozzle clogging

New mounting of glass nozzle:

- old metod epoxy glue
- new method with indium sealing
- new filter before the condenser

First results: 3 days of operation without clogging

Status: investigations are going on.

Results of construction changes

Temperature graphs during cooling procedure

Test 17.11.2015

Test 22.11.2016

Results:

- cooling is going faster,
- temperature distributions are better

Results of construction changes

Test 30.11.2016

Results:

- more than 4 hours of stable operation per day
- •Temperature distributions are better
- jet is more easy to control with the heaters and it is more stable

Cooling tests with hydrogen

Current result: 3 days of operation (3 cycles of cooling) without clogging of the nozzle Test 30.11.2016

Status: jet and droplet production in the triple point chamber

Interference method for study of noise vibrations

Specially developed setup for monitoring of noise vibrations on the pellet target

Sensitivity of the method is $\frac{1}{4} \lambda = 0.12 \ \mu m$

Interference method for study of noise vibrations

Setup was located on top of the pellet target.

Consistent switch on each noise source

Interference method for study of noise vibrations

Current tasks:

- long time operation tests with various nozzle diameters
- selection of frequencies for monodisperse droplet production as function from parameters
- nozzle sluice adjustment
- suppression of vibrations from ROOTS pump
- tests with MIFI on the water test station for interferometry diagnostics
- preparation documents for the target transfer from FZJ to ITEP