The Monitor Systems of the Cluster-Jet Target

Ann-Katrin Hergemöller

Westfälische Wilhelms-Universität Münster, Institut für Kernphysik PANDA Collaboration Meeting, December 7th 2016

Münster Setup of the Cluster Target

Monitoring system in scattering chamber Scanning rod system

- Set successfully into operation
- Determination of cluster beam properties easily possible
- Highest pressure increase corresponds to cluster beam thickness

Monitoring system in scattering chamber Scanning rod system

- Set successfully into operation
- Determination of cluster beam properties easily possible
- Highest pressure increase corresponds to cluster beam thickness

4/15

Monitoring system in scattering chamber Scanning rod system

- Set successfully into operation
- Determination of cluster beam properties easily possible
- Highest pressure increase corresponds to cluster beam thickness

Optical Monitoring System

 \Rightarrow Transition vacuum chamber

 Installation of an optical monitoring system consisting of diode laser and two CCD cameras

Software and installation realized by Bachelor student M. Seifert

 $\bullet\,$ Possibility to monitor cluster beam without influence of the cluster beam itself in a distance of 35 ${\rm cm}\,$ from nozzle

6/15

• Intensity of image corresponds directly to thickness

Optical Monitoring System

Measurement procedure

- Record two pictures (beam off, beam on)
- Make projections
- Projection in y direction corresponds to cluster beam thickness
- Fit the projection
- Calibration with system of scattering chamber

beam direction \leftarrow

Optical Monitoring System

Measurement procedure

- Record two pictures (beam off, beam on)
- Make projections
- Projection in y direction corresponds to cluster beam thickness
- Fit the projection
- Calibration with system of scattering chamber

$$f_{\rm erf}(y) = I_0 \cdot f_e(y - y_0) + I_0$$

with

$$f_{\mathsf{e}}(y) = \int_{-\infty}^{\infty} \mathsf{d}x \int_{y-\frac{d}{2}}^{y+\frac{d}{2}} \mathsf{d}y \frac{1}{2} \left(1 - \mathsf{erf}\left(\frac{r-R}{s}\right)\right)$$

- *I*₀: maximum intensity
- IU: background intensity
- R: radius
- s: smearing parameter

Optical Monitoring System Graphical User Interface

• All data is logged \Rightarrow can be provided for whole experiment

Optical Monitoring System First Measurements

- $\bullet\,$ Measurement series at 17 bar & 35 K
- $\bullet\,$ Radius constant over time & corresponds to calculated value of $\approx 1,2\,\mathrm{mm}$
- Position constant over time
- ullet Further adjustments necessary ightarrow beam not in the center of TVC

Beam stability Prototype

E Köhler, PhD Thesis, WWU Münster 2015

- Same nozzle like in the final target
- Beam is stable over hours and days

Beam stability Optical Monitoring system – final Target

- $\bullet\,$ Measurement series at 17 bar & 35 K
- Beam stability and thickness can be monitored easily

- Cluster target newly set into operation
- \Rightarrow Intensity of the cluster beam not constant!

- Cluster beam is not stable at liquid stagnation conditions
- Gas flow decreases with time \rightarrow nozzle freezing?
- Example: 10 bar & 24 K
- Visible with camera system of skimmer chamber (Pictures recorded every 5 s)

- Cluster beam is not stable at liquid stagnation conditions
- Gas flow decreases with time \rightarrow nozzle freezing?
- Example: 10 bar & 24 K
- Visible with camera system of skimmer chamber (Pictures recorded every 5 s)

- Cluster beam is not stable at liquid stagnation conditions
- Gas flow decreases with time \rightarrow nozzle freezing?
- Example: 10 bar & 24 K
- Visible with camera system of skimmer chamber (Pictures recorded every 5 s)

- Cluster beam is not stable at liquid stagnation conditions
- Gas flow decreases with time \rightarrow nozzle freezing?
- Example: 10 bar & 24 K
- Visible with camera system of skimmer chamber (Pictures recorded every 5 s)

- Cluster beam is not stable at liquid stagnation conditions
- Gas flow decreases with time \rightarrow nozzle freezing?
- Example: 10 bar & 24 K
- Visible with camera system of skimmer chamber (Pictures recorded every 5 s)

- Cluster beam is not stable at liquid stagnation conditions
- Gas flow decreases with time \rightarrow nozzle freezing?
- Example: 10 bar & 24 K
- Visible with camera system of skimmer chamber (Pictures recorded every 5 s)

- Cluster beam is not stable at liquid stagnation conditions
- Gas flow decreases with time \rightarrow nozzle freezing?
- Example: 10 bar & 24 K
- Visible with camera system of skimmer chamber (Pictures recorded every 5 s)

- Cluster beam is not stable at liquid stagnation conditions
- Gas flow decreases with time \rightarrow nozzle freezing?
- Example: 10 bar & 24 K
- Visible with camera system of skimmer chamber (Pictures recorded every 5 s)

- Cluster beam is not stable at liquid stagnation conditions
- Gas flow decreases with time \rightarrow nozzle freezing?
- Example: 10 bar & 24 K
- Visible with camera system of skimmer chamber (Pictures recorded every 5 s)

- Cluster beam is not stable at liquid stagnation conditions
- Gas flow decreases with time \rightarrow nozzle freezing?
- Example: 10 bar & 24 K
- Visible with camera system of skimmer chamber (Pictures recorded every 5 s)

- Cluster beam is not stable at liquid stagnation conditions
- Gas flow decreases with time \rightarrow nozzle freezing?
- Example: 10 bar & 24 K
- Visible with camera system of skimmer chamber (Pictures recorded every 5 s)

- Assumption: hydrogen freezes in outlet zone of nozzle
- $\rightarrow\,$ Reduced gas flow
- \rightarrow Moving of core beam
 - Possible solution: partial heating of nozzle outlet

• Nozzle heater: several wire loops in a aluminum holder

o ...

- Tests with nozzle heater
- Improvement of the beam stability
- Adjustments of skimmer, collimator and spherical joint to achieve highest thicknesses
- Determination of vacuum conditions (IP, beam dump...)

