

Radiation Hardness Study of the SciTil

Sebastian Zimmermann On behalf of the Panda SciTil group

GSI, 07.12.2016

Disclaimer

- No radiation tests performed ourselves **<u>YET</u>**
- Literature was studied to estimate the effects on the SiPMs and the scintillators
- We are confident that our components are sufficiently radiation hard
 - The following is the explanation why

AUSTRIAN

SCIENCES

The BarrelTOF

Estimated Radiation Dose

Full Edep (150cm wide XY side (Z[-40cm, 110cm]), rotated by 14.3 degree)

Full Edep (150cm wide XY side (Z[-40cm, 110cm]), rotated by 14.3 degree)

 Dose is given in Gy per year for the Barrel DIRC

 Estimated value of 1 to 5 x 10^7 GeV per bin

Estimated Radiation Dose

- Energy per bin: 5x10^7GeV
- Bin dimension:
 0.1 x 1/30 x 150 cm³
- Area towards the beam: $1/30 \times 150 \text{ cm}^2 = 5 \text{ cm}^2$

• MIP energy loss for fused silica of the DIRC:

373.7 keV/mm

• Numper of MIPs:

$$n_{MIP} = \frac{10^7 \,\text{GeV}/(\text{cm}^2 \cdot 1 \,\text{mm})}{373.7 \,\text{keV/mm}}$$
(3.1a)
= 2.67 \cdot 10^{10} \,\text{MIPs} / \text{cm}^2 \,\text{for 1 year} (3.1b)
$$\Rightarrow 2.67 \cdot 10^{11} \,\text{MIPs} / \text{cm}^2 \,\text{for 10 years} (3.1c)$$

Hit Distribution

 Rate in the forward part is 28% higher than the average of 26.7 kHz
 Tile hit rate in B-TOF

Radiation Damage

- Electrons cause temporary effects
- Hadrons cause permanent damage by dislocating atoms
- Surface damage due to lonizing Energy Loss (IEL):
 - Mainly generation of charges in the oxide (SiO2)
- Bulk damage due to Nonlonizing Energy Loss (NIEL):
 - Mainly displacement damage

Types of Defects

- Silicon Atom displaced by incident particle
 - Primary Knock on Atom (PKA)

- The PKA can displace additional atoms
 - Clusters at end of PKA track

Macroscopic Effects

- Defects in the in the Silicon lattice create energy levels between the conduction and valence band
- Change of effective doping concentration
 - Modification of the depletion (break down) voltage
- Increase of charge carrier trapping
 - Loss of charge (signal)
- Easier thermal excitation of electrons and holes

Increase of leakage current (dark current)

Damage of Different Particles

Radiation	e⁻	p⁺	n	Si*
Interaction	electromagnetic	electromagnetic and strong	strong	electromagnetic
T _{max}	155 eV	133.7 keV	133.9 keV	1 MeV
T _{av}	46 eV	210 eV	50 keV	265 eV
E _{min} point defect	260 keV	190 eV	190 eV	25 eV
E _{min} cluster defect	4.6 MeV	15 keV	15 keV	2 keV

Source: G. Lutz. Semiconductor Radiation Detectors Springer-Verlag, 1999

Sebastian Zimmermann, GSI, 07.12.2016

NIEL Scaling Hypothesis

- Experimental Observation leads to the assumption that the damage effects are proportional to the displacement damage cross section (D)
- Does not consider atom transformations and annealing effects
- Common way to scale the damage by different particles of different energies
- Normalized to the damage of 1 MeV neutrons
 - Measured in 1 MeV neutron equivalent fluence Φ_{ea}

Damage Function

• Calculate with the recoil energy E_R of the PKA and the Lindhard probability function $P(E_R)$

$$D(E) = \sum_{v} \sigma_{v}(E) \cdot \int_{0}^{E_{R}^{max}} f_{v}(E, E_{R}) P(E_{R}) dE_{R}$$

- v runs over all possible interactions, $f_v(E,E_R)$ is the probability of a particle with energy E to produce a PKA with energy E_R
- $P(E_R < E_{d,min}) = 0$

Damage Function for Multiple Different Particles

WWW:OEAW.AC.AT/SMI

Literature

- Multiple Studies of the dark current and the signal strength after irradiation
- No direct studies on the timing performance
- SiPMs operational up to Φ_{eq} = 2.2E14 cm⁻²
- Significant signal reduction and dark current increase (linear with dose) due to increased dark count rate

Simulation of dark current increase

- Study done by V.A. Kaplin et al., "Time and Amplitude characteristics of large scintillation detectors with SiPM" -2015
- Dark current increase simulated by continuous low intensity illumination by an LED

Summary of the Literature Study

Time resolution expectation

- Expected current between 8 and 40 µA/cm²
- For $3x3 \text{ mm}^2$ sensors: up to $360 \mu \text{A}$
- Taking the measurements of KETEK and SensL sensors as a reference we expect deterioration of the time resolution by $\sim 30\%$ to $\sim 70\%$ over 10 years
- Reduced pixel dead time should reduce the effect of the radiation
 - Hamamatsu: 50 ns, KETEK & SensL: >200 ns
- True impact however is not known

Scintillator Radiation Hardness

- EJ-232 polymer base: Polyvinyltoluene
- MIPs deposit 2.02 MeV/cm

$$D = 2.7 \cdot 10^{11} \frac{\text{MIPs}}{\text{cm}^2} \times 2.02 \frac{\text{MeV}}{\text{cm}} \div 1.032 \frac{\text{g}}{\text{cm}^3}$$

= $5.4 \cdot 10^{11} \frac{\text{MeV}}{\text{g}} = 5.4 \cdot 10^{20} \frac{\text{eV}}{\text{kg}}$
= $83.7 \frac{\text{J}}{\text{kg}} = 83.7 \text{Gy}$
= 8.4 krad (3.5)

Scintillator Radiation Damage

Irradiation with Co⁶⁰

Possible Irradiation Studies

- Measurement in multiple steps during irradiation
- To measure: Leakage current, Dark count rate, Breakdown voltage, Photon counting capability, Gain, Time resolution

Facility	Location	Energy [MeV]	Max. Flux $[p/(s \cdot cm^2)]$	Time to expected dose
Proton Irradiation Facility (PIF)	PSI in Villigen, Switzerland	6 - 230	$2 \cdot 10^{9}$	$\sim 1 \min$
Light Ion Irradia- tion Facility (LIF)	Centre de Recherches du Cy- clotron, Louvain-la-Neuve, Bel- gium	14.4 - 65	$2 \cdot 10^{8}$	$\sim 5~{\rm min}$
Radiation Effects Facility (RADEF)	Jyväskylä, Finland	6 - 60	10^{10}	few seconds
Proton Irradiation Facility (PAULA)	Uppsala, Sweden	20 - 180	up to 10^{12}	few seconds

Summary

- Radiation damage is scaled with the 1 MeV neutron equivalent fluence
- Expected fluence of 1.7x10¹¹ n_{eq}/cm²
 - SiPMs still functional
 - Time resolution deterioration roughly in the order of 50%
- Expected dose in the scintillator 8.4 krad
 - Minor losses in signal strength
 - Negligible considering annealing effects
- Own irradiation measurements will need to be performed

Thank you for your attention