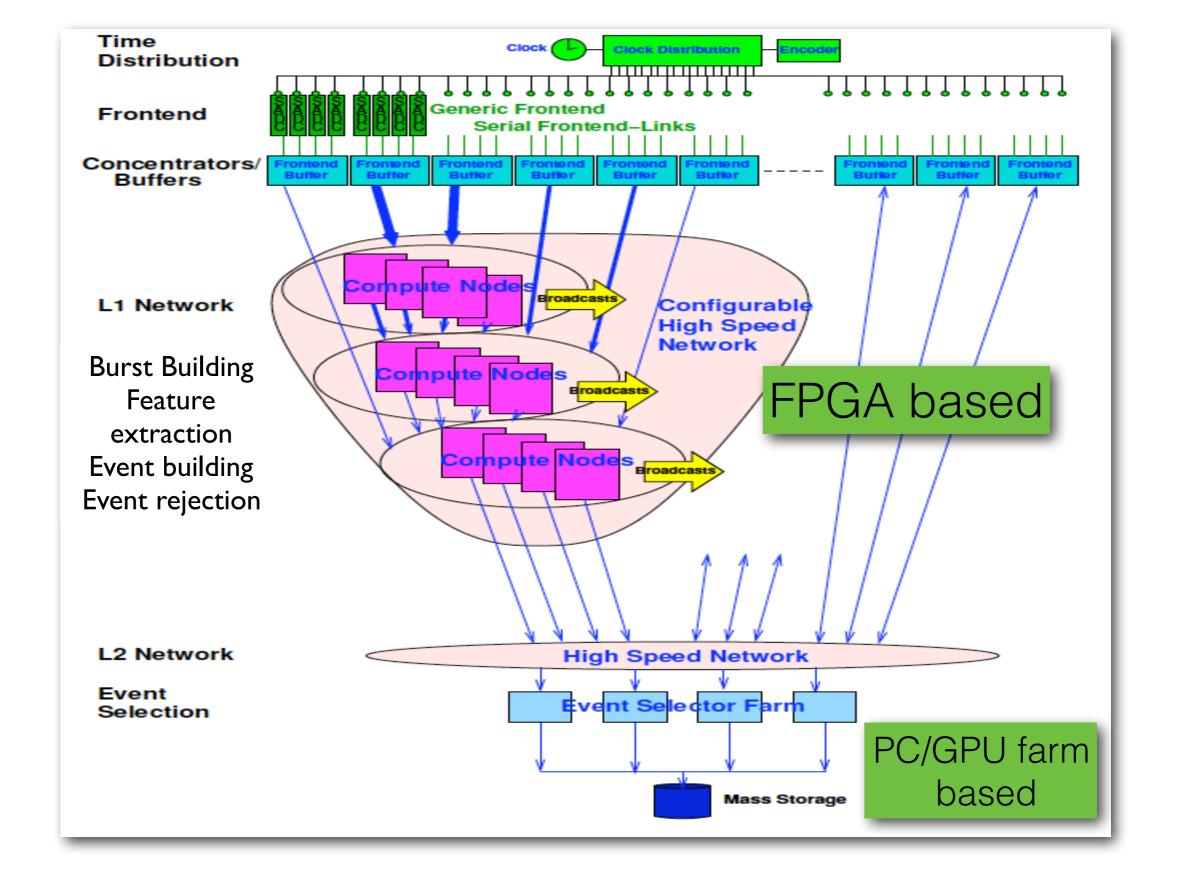

Towards a DAQT TDR

December 2016

Data Acquisition and Event Filtering

- Problem: finding the needle in the haystack
- total inelastic cross section
 - 50 mb
- Interesting physics
 - most channels < 100 nb
- 2×10⁶ interactions /s
- Data rate after FEE reduction: 200 GBytes/s
 - 17 PBytes/day
- Goal for online event filtering:
 - reduce "background" by factor of 1000

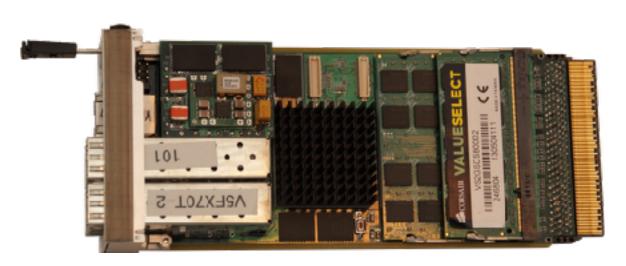

Challenges

- How much can we reduce the primary data rate?
 - maybe up to factor 1000, some loss of efficiency
- Caveat: event based estimate, but overlapping data @ 20 MHz
 - A priori, there are no "events", there is just a stream of "data" from each sub-system
 - Worst case: if we cannot assemble events online, we have to store everything, because we cannot reject anything!
 - 200 GB/s -> 17 PB/day, compare to 30 PB mass storage/year @ FAIR Tier 0
 - Impossible!
 - Even running at 200 KHz only would exceed the available yearly storage capacity
- The PANDA physics program is not feasible without effective filtering, reducing the event rate by more than 2 orders of magnitude
- This works only if we are able to reconstruct most of the raw data in realtime. Massive challenge!
 - We need full time-based simulation and reconstruction software to judge feasibility and determine required resources (not available now and for the foreseeable future, due to lack of manpower)

Proposed workaround (Groningen DAQT workshop, April 2016)

Staging

- **Phase I**: DAQ and event filter for "save" event rates requiring no real-time treatment of overlapping events
 - Burst building -> event building
 - Event filtering performance can be evaluated with eventbased simulations
- Phase 2: Upgrade to 20 MHz



PANDA DAQ / Event Filter

Building Blocks (L1 network)

- FPGA based Compute Nodes (CN)
- ATCA standard, full mesh backplane
- 4 + I FPGA Virtex5 70FXT
- 16 optical links, GbE
- 18 GBytes DDR2 RAM
- Upgrade to Kintex Ultrascale architecture (see talk by Thomas Geßler)
- Factor 10 better performance
- Factor 5 better performance/price ratio

Contents of TDR

- Introduction : physics objectives, detector configuration
 - Cross sections, luminosities, detector performance (tracking, EMC, PID ...)
- **Requirements** (event rates, event size, pile-up situation, storage capacity, event filtering capabilities, partitioning of DAQ, running modes...)
- System architecture
 - Building blocks (time synchronisation (SODAnet), data concentrators, data transport, FPGA based Compute Nodes, CPU/GPU farm, ...)
 - Data format, interfaces and data flow
 - Event filter: partitioning and performance of algorithms (L1, L2), ...
 - Run control system, error detection and recovery, Data Quality Monitoring (DQM)
- Performance simulations and measurements with prototype systems
- Manpower, schedule and cost

Pre-Requisits

urgently needed

Definition of requirements

- Physics programme of Phase I needs to be defined
 - Cross sections, background situation, detector configuration
 - Event rate, event size and required rejection factors, acceptable efficiency loss
 - Need simulation of gas detector performance to explore/define "safe" rate before pile-up destroys rejection capability for event-based approach

Partitioning and Performance of Event Filtering

- We need realistic event-based simulations for phase I physics channels with the staged detector setup (not : fast simulations, simulations with ideal tracking or ideal PID)
 - Unfortunately this still requires a significant development effort limited by lack of manpower!
- We need to reconstruct the events both with the full off-line algorithms and with fast algorithms based on FPGA hardware
 - Example: STT tracking in FPGA takes 7 us / event vs. much longer but with better resolution with offline algorithm
 - This information is needed to define the partitioning of the event filter

Next DAQT Workshop

• April 10/11 near Giessen