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Outlines

• Beam time setup April 2016 

• Analysis method review 

• Results of spatial and energy resolution  

• Summary and outlook 

 Solmaz Vejdani , PANDA Collaboration meeting 05. December 2016, Darmstadt
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STT beam test in April 2016

• For the first time in COSY-TOF area,  almost 10 days beam 
with time 3 prototype detectors

1. STT with flash ADC read out

2. STT with ASIC read out

3. Forward tracker with ASIC readout

• Proton beam with 4 different momenta (0.55 GeV/c, 0.75 
GeV/c, 1.00 GeV/c and 2.95 GeV/c)

• Different high voltages (1750V, 1800V & 1850V)
 Solmaz Vejdani , PANDA Collaboration meeting 05. December 2016, Darmstadt
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0.55 GeV/c
0.75 GeV/c
1.00 GeV/c
 2.95 GeV/c
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Proton beam

Different Proton impinging angle:  
90deg, 23deg,18deg

Proton beam
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1. Tracking

2.Energy loss measurement

Analysis Method

 Solmaz Vejdani , PANDA Collaboration meeting 05. December 2016 ,Darmstadt
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Analysis Method

1. Tracking

•Drift time spectra
•Calculation of radius-drift time (calibration curve)
•Track reconstruction
•Calculation of the path length

 Solmaz Vejdani , PANDA Collaboration meeting 05. December 2016, Darmstadt



M
itg

lie
d 

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

kvi - center for advanced radiation technology

TDC_pl3_el9
Entries  585
Mean    323.8
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Fitted time spectrum of an illuminated tube

• For  each  tube  the  parameters  of  the  drift  time 
distribution are derived from the fit performed with 
the following empirical  function:

• The minimum and maximum drift times, t0 and tmax , 
corresponds to a track traversing the tube close to 
the wire and to the cathode wall.

• The value of t0 , depends on delays of signal cables 
and front-end electronics, and HV setting.

• Δt = tmax - t0 depends only on the drift properties of 
the tubes.

Analysis Method

 Solmaz Vejdani , PANDA Collaboration meeting 05. December 2016, Darmstadt 10
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The primary information from the tubes:

Analysis Method

11 Solmaz Vejdani , PANDA Collaboration meeting 05. December 2016, Darmstadt
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The  drift  time  distribution  of  the  arriving 
signals, the number of tracks traversing the 
tubes within a time interval:

Analysis Method

The primary information from the tubes:

 Solmaz Vejdani , PANDA Collaboration meeting 05. December 2016, Darmstadt
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Analysis Method

3. Physics performances of a single straw tube

3.2.4 Simulation of the self–calibration procedure

The primary information from the tube is the drift time distribution of the
arriving signals, that is the number of tracks dn traversing the tube within the
time interval dt. A typical drift time distribution, in the case of a parallel and
uniform illumination of the tube, is shown in Fig. 3.13 (left).
The self–calibration method has been simulated: it exploits the properties of
this distribution.
Since the track density is constant over the tube diameter, it is possible to
write:

dn

dr
=

Ntot

Rtube
, (3.50)

where n is the number of tracks, r is the wire distance, Ntot is the total number
of tracks and Rtube the tube radius. The number of tracks in a time interval
can be obtained directly from the above relation:

dn

dt
=

dn

dr

dr

dt
=

Ntot

Rtube

dr

dt
. (3.51)

By integrating the time spectrum up to t, the space–time relation r(t), shown
in Fig. 3.13 (right), is obtained:

r(t) =
Rtube

Ntot

Z t

0

dn

dt0 dt0. (3.52)

Figure 3.13: Simulation of a typical TDC spectrum of a single tube uniformly
illuminated (left) and space–time relation r(t) (right) obtained with the self–
calibration method of Eq. (3.52).

After this step, the method requires the correction of the systematic error
due to the threshold level, that appears as an o↵set in the histogram of the
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4.3. Straw tube calibration

(Eq. (3.52)). In particular, taking into account the finite TDC resolution (bin
size) and the wire radius Rwire, it becomes:

r(ti) =

Pit
i=1 Ni

Ntot
· (Rtube �Rwire) + Rwire. (4.2)

Rtube and Rwire are the tube and wire radii, respectively; Ntot is the sum of all
bin entries Ni.
The obtained space–time relation r(t) is shown in Fig. 4.6.

Drift time (ns)
0 20 40 60 80 100 120 140 160

Is
oc

hr
on

e 
ra

di
us

 (c
m

)

0

0.1

0.2

0.3

0.4

0.5

Figure 4.6: Isochrones radius – drift time relation (r(t)), parametrised using a
combination of Chebyshev polynomials of the first kind, up to the fifth order.

It has been parameterised using a combination of Chebyshev polynomials of
the first kind up to the fifth order:3

r(t) = p0+p1t+p2(2t
2�1)+p3(4t

3�3t)+p4(8t
4�8t2+1)+p5(16t5�20t3+5t).

(4.4)
Once the space–time relation is known, the isochrone radius of a certain tube
is computed by substituting in Eq. (4.4) the measured drift time. This is
calculated by subtracting from the measured drift “raw” time the time o↵set
t0 of that tube, obtained from the fit of Eq. (4.1).

3The Chebyshev polynomials of the first kind are defined by the recurrence relation:

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x)� Tn�1(x). (4.3)
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3. Physics performances of a single straw tube

3.2.4 Simulation of the self–calibration procedure

The primary information from the tube is the drift time distribution of the
arriving signals, that is the number of tracks dn traversing the tube within the
time interval dt. A typical drift time distribution, in the case of a parallel and
uniform illumination of the tube, is shown in Fig. 3.13 (left).
The self–calibration method has been simulated: it exploits the properties of
this distribution.
Since the track density is constant over the tube diameter, it is possible to
write:

dn

dr
=

Ntot

Rtube
, (3.50)

where n is the number of tracks, r is the wire distance, Ntot is the total number
of tracks and Rtube the tube radius. The number of tracks in a time interval
can be obtained directly from the above relation:

dn

dt
=

dn

dr

dr

dt
=

Ntot

Rtube

dr

dt
. (3.51)

By integrating the time spectrum up to t, the space–time relation r(t), shown
in Fig. 3.13 (right), is obtained:

r(t) =
Rtube

Ntot

Z t

0

dn

dt0 dt0. (3.52)

Figure 3.13: Simulation of a typical TDC spectrum of a single tube uniformly
illuminated (left) and space–time relation r(t) (right) obtained with the self–
calibration method of Eq. (3.52).

After this step, the method requires the correction of the systematic error
due to the threshold level, that appears as an o↵set in the histogram of the

76

The  drift  time  distribution  of  the  arriving 
signals, the number of tracks traversing the 
tubes within a time interval:

The primary information from the tubes:

3. Physics performances of a single straw tube

3.2.4 Simulation of the self–calibration procedure

The primary information from the tube is the drift time distribution of the
arriving signals, that is the number of tracks dn traversing the tube within the
time interval dt. A typical drift time distribution, in the case of a parallel and
uniform illumination of the tube, is shown in Fig. 3.13 (left).
The self–calibration method has been simulated: it exploits the properties of
this distribution.
Since the track density is constant over the tube diameter, it is possible to
write:

dn

dr
=

Ntot

Rtube
, (3.50)

where n is the number of tracks, r is the wire distance, Ntot is the total number
of tracks and Rtube the tube radius. The number of tracks in a time interval
can be obtained directly from the above relation:

dn

dt
=

dn

dr

dr

dt
=

Ntot

Rtube

dr

dt
. (3.51)

By integrating the time spectrum up to t, the space–time relation r(t), shown
in Fig. 3.13 (right), is obtained:

r(t) =
Rtube

Ntot

Z t

0

dn

dt0 dt0. (3.52)

Figure 3.13: Simulation of a typical TDC spectrum of a single tube uniformly
illuminated (left) and space–time relation r(t) (right) obtained with the self–
calibration method of Eq. (3.52).

After this step, the method requires the correction of the systematic error
due to the threshold level, that appears as an o↵set in the histogram of the

76

n is the number of tracks and r is the wire 
distance.

3. Physics performances of a single straw tube

3.2.4 Simulation of the self–calibration procedure

The primary information from the tube is the drift time distribution of the
arriving signals, that is the number of tracks dn traversing the tube within the
time interval dt. A typical drift time distribution, in the case of a parallel and
uniform illumination of the tube, is shown in Fig. 3.13 (left).
The self–calibration method has been simulated: it exploits the properties of
this distribution.
Since the track density is constant over the tube diameter, it is possible to
write:

dn

dr
=

Ntot

Rtube
, (3.50)

where n is the number of tracks, r is the wire distance, Ntot is the total number
of tracks and Rtube the tube radius. The number of tracks in a time interval
can be obtained directly from the above relation:

dn

dt
=

dn

dr

dr

dt
=

Ntot

Rtube

dr

dt
. (3.51)

By integrating the time spectrum up to t, the space–time relation r(t), shown
in Fig. 3.13 (right), is obtained:

r(t) =
Rtube

Ntot

Z t

0

dn

dt0 dt0. (3.52)

Figure 3.13: Simulation of a typical TDC spectrum of a single tube uniformly
illuminated (left) and space–time relation r(t) (right) obtained with the self–
calibration method of Eq. (3.52).

After this step, the method requires the correction of the systematic error
due to the threshold level, that appears as an o↵set in the histogram of the

76

4.3. Straw tube calibration

(Eq. (3.52)). In particular, taking into account the finite TDC resolution (bin
size) and the wire radius Rwire, it becomes:

r(ti) =

Pit
i=1 Ni

Ntot
· (Rtube �Rwire) + Rwire. (4.2)

Rtube and Rwire are the tube and wire radii, respectively; Ntot is the sum of all
bin entries Ni.
The obtained space–time relation r(t) is shown in Fig. 4.6.
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It has been parameterised using a combination of Chebyshev polynomials of
the first kind up to the fifth order:3

r(t) = p0+p1t+p2(2t
2�1)+p3(4t

3�3t)+p4(8t
4�8t2+1)+p5(16t5�20t3+5t).

(4.4)
Once the space–time relation is known, the isochrone radius of a certain tube
is computed by substituting in Eq. (4.4) the measured drift time. This is
calculated by subtracting from the measured drift “raw” time the time o↵set
t0 of that tube, obtained from the fit of Eq. (4.1).

3The Chebyshev polynomials of the first kind are defined by the recurrence relation:

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x)� Tn�1(x). (4.3)
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1. Pre-prefit
2. Pre-fit using Minuit 
3. The Intersection Finder
4. Refit  by using  Minuit minimization

Track reconstruction
The observables measured by the straw 
tubes are not the (x; y) coordinates of the 
particle hits, but the (x; y) coordinates of the 
firing wires and the drift times.

 Solmaz Vejdani , PANDA Collaboration meeting 05. December 2016, Darmstadt
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Data from April  2016, Isochrone calibration

• Clean beam condition, data taken for different intensities
• Equal samples of data collected at different momenta
• Obtained calibration curve used for the analysis of data  

18
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Drift time (ns)

Drift Time Drift Time - Drift Radius
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Residual distribution for 0.550 GeV/c, 1800V
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Spatial resolution  
for 0.550 GeV/c, 1800V
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Residual distribution for 0.550 GeV/c

The best achieved spatial resolution  at 0.550 GeV/c proton momentum:  

at 1800V is 𝞼(spatial resolution) = 147± 1% (µm) 
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2.Energy loss measurement

• Energy loss spectra for reconstructed tracks

• Selective measurement of energy losses with Truncation mean(cut of largest energy losses per track )

• Calculation of path length for truncated events

• Calculation of specific energy losses per path length

Analysis Method



M
itg

lie
d 

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

kvi - center for advanced radiation technology

23

h416
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Energy Loss for 16 straws
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2.95 GeV/c

Energy distribution for different momenta at  1800V

0.75 GeV/c
0.55 GeV/c
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Energy loss for 16 straws at  1800V
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Results of the energy Resolution 
for example at 0.55 GeV/c

The best preliminary achieved energy resolution  (with  16 straws and at 0.550 
GeV/c proton momentum :  𝞼(dE/dx)   ~  8.2%
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dE/dx 16 hit track, TM40
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Summary of current results
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For the energy resolution the truncation mean 
of 40% applied to initial dE/dx distributions

Summary of the results for reconstructed tracks 
of 16 hits
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Summary & Outlook
• The first beam test in COSY- TOF area was successful 

• Clean beam condition, data taken for different intensities, low 

noise level smaller than 6 mV

•  The results of the spatial and energy resolutions look good and 

promising

• Data analysis for is still in progress …

• New beam test (28 November till 04 December 2016) with 

deuteron beam in COSY-TOF area was successful and the new data 

analysis will be done in the near future.
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Thank You!
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Back up
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Analysis Method
1.Tracking 

• Signal selection
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The number of tracks dn traversing the tube within the time interval dt.
The minimum and the maximum drift times, t0 and tmax 
P1 is the noise level 
P2 is a normalization factor
P3 and P4 are related to the shape of the distribution 
P5 and P6 are the values of t0 and tmax 
P7 and P8 describe the slope of the leading and trailing edge of the distribution
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ri,fit is the distance of closest approach of the best fit line found in the center of tube i. 

ri,raw indicates the radius computed using the r(t) relation 
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Zero crossing time 

calculated for highest 

steepness of leading 

edge


