

First Analysis Results of Disc DIRC Testbeam 2016

<u>Mustafa Schmidt</u>, Simon Bodenschatz, Michael Düren, Erik Etzelmüller, Klaus Föhl, Avetik Hayrapetyan, Oliver Merle, Julian Rieke

PANDA Collaboration Meeting LX.

Cherenkov Group Meeting

December 06, 2016

First Analysis Results of Disc DIRC Testbeam 2016

0/26 0 / 26

I. Testbeam Setup

DESY Testbeam Area

Creation of bremsstrahlung with Carbon Fiber Target \rightarrow Creation of e^+e^- pairs \rightarrow Filtering e^- with primary collimator

Mechanical Setup

Newly constructed frame for radiadator disk and ROM plastic holders with 3D printer:

Only 3 focusing elements available \rightarrow setup containing 1 complete readout module

Trigger Scheme

Using 2 of 4 scintillators together with calorimeter for trigger logic (signals from T3/T4 too small)

Trigger signals converted to TOFPET compatible pulses with additional pulser and capicator

Testbeam Fotos

Testbeam Fotos

2016 DISC DIRC PROTOTYPE available setup

view downstream

• Focusing Elements (FELs):

- Center: Best quality
- Up: Good quality
- Down: Bad quality (problems with glue between bar and focusing light guide)

Radiator disk:

- Production Company: Nikon
- Size: 50 cm×50 cm×2 cm
- Fused Silica
- approx. 1 ns surface roughness

Sensor:

- Photonis MCP
- Entry Window: 2 mm thickness
- Collection Efficiency: approx. 65%

• Readout System:

- Tofpet: Time resolution 50 ps
- Continuous readout without gate
- Time stamp of trigger channel for offline reconstruction

Scan

Different scans performed for 3 GeV beam momentum:

- HV scans
- Threshold scans
- Collimator scans
- Angular scans for different positions
- x and y scans for fixed angles

Testbeam parameters:

- Spatial Resolution: $r \approx 5 \,\mathrm{mm}$
- Angular Resolution: heta pprox 1 mrad
- Primary Collimator: 5x5x5x5 mm
- Secondary Collimator: 15x15 mm
- Beam momentum: 3 GeV/c

II. Testbeam Analysis

TOFPET Laser Run

Measurement results with laser run according to prediction for Photonis MCP

scan

Trigger

Sample measurement: x = 200 mm, y = 187 mm (center position of ROM), $\theta = 16^{\circ}$

Pure Trigger Time Difference

First Analysis Results of Disc DIRC Testbeam 2016

Time Spectrum

Timing as difference between photon and trigger signal \rightarrow Cherenkov light around 240 ns before trigger

Constant time window for event filtering

MCP Hit Pattern

Hit pattern for time window of $12\,\mathrm{ns}$ with direct Cherenkov light and reflection

MCP Column Projection

Channel distribution for each MCP column:

Projection resolution: $\sigma \approx 2.0$ pixel for Cherenkov peak Approx. 1 hit per column per event (agreement with Monte-Carlo simulation)

Hit Multiplicity

Number of hits per trigger (center FEL):

Discrepency for Poissonian fit and data for higher multiplicity due to dark counts and charge sharing (under investigation)

Angle Scan

Results of angle scan for $\theta = 2^{\circ} \dots 22^{\circ}$ in 2° steps ($\theta = 2^{\circ}$ and $\theta = 22^{\circ}$ out of range)

MCP Column Projection

Smaller peaks belonging to direct reflection on rim

Results from Angle Scan

Linear dependency between channel number (pixel) and AOI:

Results Angle Scan

Channel Single Photon Resolution 90 Mean Channel 80 Linear Fit 70 60 50 40 30 20 10 12 Δ 6 8 10 14 16 18 20 Angle [deg]

Results of angle scan exactly according to prediction

First Position Scan

Results of y-position scan for $y = 0 \text{ mm} \dots 500 \text{ mm}$ in 17.5 mm steps for $\theta = 10^{\circ}$

Results Position Scan

Mustafa Schmidt

III. Monte-Carlo Simulations

Setup Geometry

All relevant objects included in Geant4 Monte-Carlo simulation (no passive volumes):

- Standalone time-based simulations with Geant4
- Trigger timing according to measurement
- Smearing of particle track according to DESY information
- Wavelength dependency of. . .
 - refractive index of fused silica
 - mirror reflecivity
 - absorption length in fused silica
 - absorption coefficient of optical grease
 - MCP quantum efficiency
- Charge sharing, cross talk and dark counts additionally implemented

No measured data for wavelengths smaller than 380 nm available:

(Interpolated from measured data) (Assumed reflectivity)

Large influence of UV photons on single photon resolution according to simulations

Adjusted Quantum Efficiency

Measured quantum efficiency of Photonis MCP in Erlangen:

Again large influence of smaller wavelengths

Results for same parameters with different minimum wavelengths:

Simulation results highly influenced by dispersion (not all parameters known until now)

 \rightarrow "Truth lies somewhere in between"

Two possibilities: Measuring or tuning of mirror reflectivity

Conclusion & Outlook

- Succesfull testbeam with prototype setup almost identical to final detector \rightarrow analysis planed to include in TDR next summer
- Changing input parameters in Monte-Carlo simulation necessary
- Only 1 ROM with different focusing elements available
- Photon yield reproducable with Monte-Carlo data (discrepency until now < 20 % most likely due to dark counts and noise)
- Single photon resolution still under investigation (measured data of mirror important)
- Planing next testbeam at CERN with complete prototype setup and updated mechanics
- Testbeam with magnetic field should be prefered