

Status Update on the Activities on PASTA

Alessandra Lai, Forschungszentrum Jülich, 6 December, 2016

Outline

PASTA Readout Chain

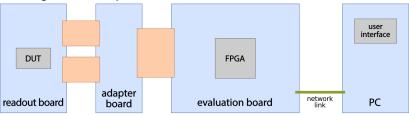
Fixes for Known Bugs

New Developments

Data Analysis - Preliminary

Summary

Outlook


Alessandra Lai | Status Update on the Activities on PASTA | 6 December, 2016

JDRS: Jülich Digital Readout System

The basic components

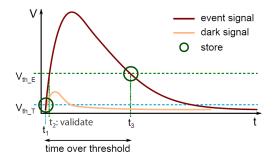
Jülich Digital Readout System (JDRS).

Data conversion and communication with the PC:

- DUT: ToPix, PASTA
- evaluation board: Xilinx ML605 (Virtex-6 FPGA)
- firmware: VHDL

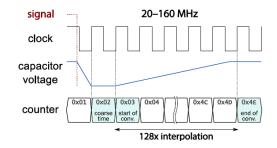
Configuration and data handling:

- PC
- software: C++
- MVD readout framework (MRF)
- Qt-based GUI


PASTA: PANDA Strip Asic

Free running readout chip for the strips

Concept: measurement of points in time based on two leading-edge discriminator outputs.


- Low threshold time branch: resolve leading edge of pulse.
- High threshold energy branch: falling edge, pulse length (i.e. deposited charge)

Timestamps

- Clock resolution: 6.25 ns (@160 MHz) coarse timestamp.
- Enhanced resolution: up to 50 ps fine timestamp.

- t_coarse \rightarrow leading edge of the clk after threshold crossing.
- $t_{fine} \simeq t_{eoc}^{1} t_{soc}^{2}$

¹end of conversion ²start of conversion

Bug Fixes

Bugs reported @MVD meeting during June CM have been fixed:

- bug in channel configuration (address)
- bug on 10b/8b decoding (synchronization)
- problem on the transmission line (inversion)

Another bug in the local configuration not visible during configuration, affected the behavior of the chip:

```
constant DEFAULT_CH_CONFIG : std_logic_vector(CH_CONFIG_SIZE-1 downto 0) :=
    '0' & -- 41 finish config
    -- analogue configuration
    b"1010" & -- 40..37 Iref_ratio, energy
    b"1010" & -- 36..33 Iref_ratio, time
    b"00000" & -- 32..28 HCLDAC_e
    b"00000" & -- 27..23 HCLDAC_t
    '0' & -- 22 not used
    b"1000" & -- 21..18 If
    ...
```


By default all channels are enabled in a test mode. I.e. they all receive the test pulse.

 $ch_test_configuration \rightarrow$ single channels to sensor or calibration circuit

Global	Globa	al (Ex	(pert)	C	hann	el (Expert) I	Cha	nnel (Expe	rt) II	Te	st Pu	lse																					
Channe	I Conf	liaur	atio	,																														
		-																																
It	em	Pos	Len	Min	Max		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
1 test	config	0	1	0	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

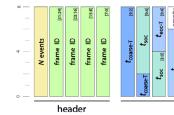
Channel Scan

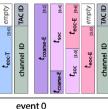
- Define the type of injection.
- Scan a user define range of channels.
- Choose up to two parameters to sweep (at present, global thresholds and pulse amplitude available).

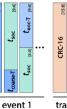
test pulse to TDC (digital)	✓ two param scan
 test pulse to front-end (analog) 	First Loop Second Loop
ch start 0	HCGDACn - HCGDACp -
ch stop 63	start 0 🜲 start 0 🜲
curr ch	stop 15 🜩 stop 15 🜩
	step 1 🔹 step 1
	start scan

Data Handling

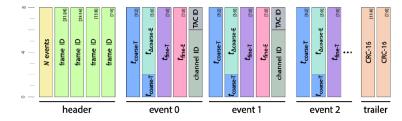
- FPGA data handling:
 - 10b/8b decoded data stored in FIFO.
- Software data handling:
 - request data from fifo.
 - store raw data in ASCII file (hex).
 - convert data word into usable object.


pathname:	
oftware/GUI_modules/	/daqReader/readoutData/decode/
ilename:	
test.dat	✓ suppress comma words
rest.uat	✓ display frame indicator
Save using:	suppress empty frames
ASCII	auppress empty names
boost serial	readout iterations 200 🌻
	current iteration
	start readout stop readout


- Suppress comma words
- Display frame indicator
- Suppress empty frames


Data Format

Full mode: two words per event not decoded in the software.



t_{coarse-T}

trailer

CRC-16

Compact mode: one word per event decoded in the software .

Alessandra Lai | Status Update on the Activities on PASTA | 6 December, 2016

Empty Frames Suppression

Problem:

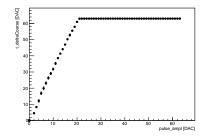
After the FIFO buffer(s) are completely filled \rightarrow data loss inbetween two readout requests.

Solution:

Different (more or less) complicated options to fix this. Quick and efficient workaround for testing phase

- \longrightarrow suppression of empty frames @FPGA level.
- \implies Sufficient for high intensity beam?

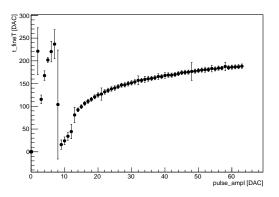
Data Analysis - Preliminary


Offline data analysis in ROOT.

- Import decoded data from ASCII file.
- Store it in a TTree.
- Several macros available for different analysis.

TOT Linearity

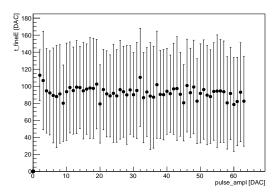
Rough extimation of the time over threshold: $t_{\Delta coarse} = t_{coarseE} - t_{coarseT}$



- Saturation at $t_{\Delta coarse=}$ 63 due to compact mode: \rightarrow value transmitted using only 6 bits.
- Maximum amplitude detectable @50 MHz: 1.3 μs.
- Maximum amplitude detectable @160 MHz: 400 ns.

Fine Time - Time Branch

 $t_fine \simeq t_eoc - t_soc$



 Discontinuity (probably) due to which clock edge is used for calculation (i.e. the first one after a falling edge).

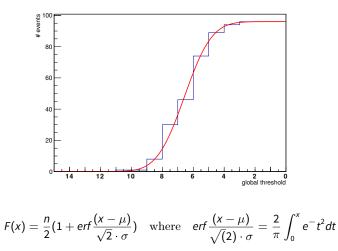
Fine Time - Energy Branch

 $t_fine \simeq t_eoc - t_soc$

- Falling edge slower than the rising edge.
- Susceptible to noise.
- Jitter in the timestamp.
- Quite big error bars. (?)

Threshold Scan - qualitative

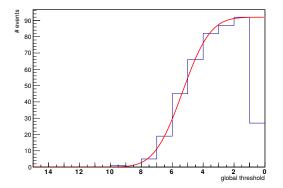
Global thresholds


- $\Delta_{th} = HCGDAC + -HCGDAC -$
 - \longrightarrow midvalue of an interval with predefined amplitude.
- Sweep over Δ_{th} at fixed pulse amplitude.
- Expected: S-curve shape.
- Observed: box-like shape
 - \longrightarrow for pulse amplitude > 2 the signal is already above threshold.

Threshold Scan - qualitative

Global thresholds

Pulse amplitude = 1



Alessandra Lai | Status Update on the Activities on PASTA | 6 December, 2016

Threshold Scan - qualitative

- Not all the channels behave the same \rightarrow no threshold distribution. n.
- Events loss at small $\Delta_{th} \rightarrow$ lower limit of interval below baseline.

Possible improvements:

- fine tuning with local thresholds
- adjusting the baseline voltage
 Alessandra Lai | Status Update on the Activities on PASTA | 6 December, 2016

Summary

- Development of the JDRS is ongoing.
- Tools for first analysis of data from PASTA available.
- Overall behavior of the chip still unclear (e.g. channels behave differently).
- Need input from the experts on how to tackle this problem.

Outlook

- Calibration of the DAC for meaningful estimation of noise etc.
- Understand behavior of nasty channels.
- Continue analysis towards chip characterization.
- Continue developing JDRS with needed features.
- Implementation in the firmware of a test pulse with configurable phase shift wrt the clock.