

Serial Adapter for I²C / APFEL and 8 channel DAC ASIC

Holger Flemming

GSI Helmholtzzentrum für Schwerionenforschung GmbH Experiment Electronics Department

December 5, 2016

Outline

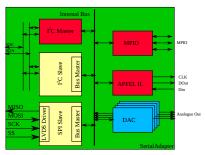
- Motivation

Motivation

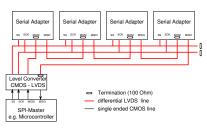
- Currently two different serial interfaces are foreseen to be used inside the barrel:
 - I²C for High voltage DACs
 - APFEL serial configuration interface
- Both interfaces use single ended lines
 - \Rightarrow need ground connection \Rightarrow Risk of ground loops
- Both interfaces are not compatible ⇒ Requires additional cabling inside the magnet.

Wish for an adaptor circuit with additional analogue features raised up.

- Reuse of tested VHDL entities and available Analogue blocks
- Integration of 10 bit DACs for HV adjustment.
 - ⇒ Could also be interesting for End cap HV distribution

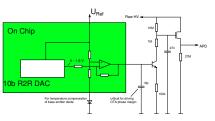

Outline

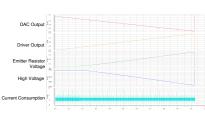
- Chip Architecture
 - Global Architecture
 - Analogue Part


Chip Architecture

Global Architecture

Build an adaptor circuit with a common back end and front ends for I²C, SPI and APFEL serial configuration interface

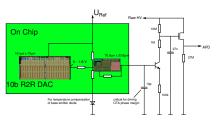

SerialAdapter Block Diagram


SPI back end connection

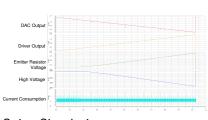
Chip Architecture

Analogue Part

Circuit of HV Adjustment



Spice Simulation

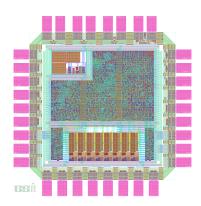

- 10 bit R2R DAC already used in several ASIC projects
- OTA design taken from HitDetection
- Same external circuit as on current HV distribution PCB

Chip Architecture

Analogue Part

Circuit of HV Adjustment

Spice Simulation


- 10 bit R2R DAC already used in several ASIC projects
- OTA design taken from HitDetection
- Same external circuit as on current HV distribution PCB

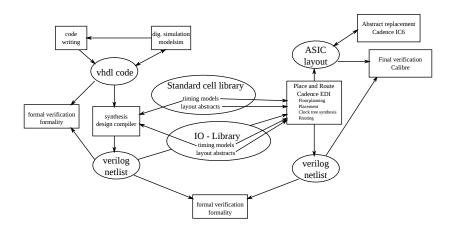
Outline

- Status and Schedule

Status and Schedule

- First Idea: March 2016
- Project launch with financing by University of Bonn after September CM meeting in Mainz
- November 28th: Dead line for tape out
- Expected delivery in February 2017
- Packaging in QFN32 in early spring
- Prototyping costs: ≈ € 5660

 $1.5 \times 1.5 \text{ mm}^2$ Mini ASIC in UMC 180 nm CMOS technology


Backup

Costs

• 1 Mini@sic Block

Number of Chips		Total costs	Packaging	Cost/chip
30	(min. number)	€3160	€2500	€188.67
180	(one slice)	€9660	€2500	€67.56
270		€16600	€2500	€106.11
4050	(full barrel)	€35050	€5000	€9.89

Digital Design Flow

