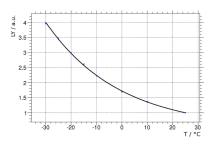
THMP and Temperature Sensor Production

Miriam Kümmel

Ruhr-Universität Bochum Institut für Experimentalphysik I

LIX. PANDA-Collaboration Meeting
December 2016



Why and How Do We Measure Temperatures?

PWO-II: LY depends on T with $\frac{d(LY)}{dT} = 3 \%/^{\circ}C$ at -25 °C

- Goal for $\overline{P}ANDA$: $\Delta T < 0.1$ °C \rightarrow sensors with $\sigma_T < 0.02$ °C
- R vs T relation of platinum quite linear

$$R(T) \approx R(0^{\circ}C)(1 + \alpha_{Pt} \cdot T), \quad \alpha_{Pt} = 3.89 \cdot 10^{-3} K^{-1}$$

• Accuracy for temperature sensors translates to accuracy for the THM \overline{P} : $\sigma_R \approx \frac{\partial R(T)}{\partial T} \cdot \sigma_T \approx 7.8 \, \text{m}\Omega$

Status of Temperature Sensor Production

- Need:
 - 482 temperature sensors designated for forward endcap
 - 1152 temperature sensors designated for barrel (72/slice)
 (Mainz is taking care of backward endcap)

positioning by Markus Moritz

Status of Temperature Sensor Production

Need:

- 482 temperature sensors designated for forward endcap
- 1152 temperature sensors designated for barrel (72/slice) (Mainz is taking care of backward endcap)

Status:

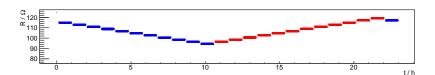
- 613 temperature sensors produced
- 545 temperature sensors calibrated (uptodate setup!)
 (64 shortcut / bad connection)
- 83 high quality sensors provided for test slice (11 spare)
- Adapter boards for test slice designed and printed, currently equipping with connectors

Status of Temperature Sensor Production

Need:

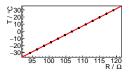
- 482 temperature sensors designated for forward endcap
- 1152 temperature sensors designated for barrel (72/slice)
 (Mainz is taking care of backward endcap)

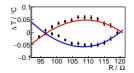
Status:

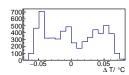

- 613 temperature sensors produced
- 545 temperature sensors calibrated (uptodate setup!)
 (64 shortcut / bad connection)
- 83 high quality sensors provided for test slice (11 spare)
- Adapter boards for test slice designed and printed, currently equipping with connectors

• Keep running:

- Sufficient amount of platinum wire bought and delivered
- Boards (plugs) ordered
- Inviting offers for copper coated polyamid foil (ultrathin wires)

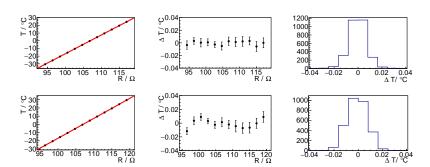

Quality Assurance

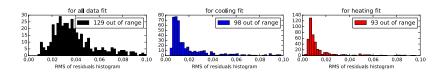

- Data selection: Consider all data except first 10 minutes after change of temperature set value
- Split the data into two sets to respect hysteresis



Quality Assurance

- Data selection: Consider all data except first 10 minutes after change of temperature set value
- Split the data into two sets to respect hysteresis




Quality Assurance

- Data selection: Consider all data except first 10 minutes after change of temperature set value
- Split the data into two sets to respect hysteresis
- Consider the distance of each datapoint to the fitted function

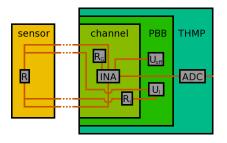
Quality Assurance

- Data selection: Consider all data except first 10 minutes after change of temperature set value
- Split the data into two sets to respect hysteresis
- Consider the distance of each datapoint to the fitted function
- Determine the RMS of the distribution

• 305 of 545 sensors (55%): RMS< 0.02 for both subsamples

Status of THMP Production

Need:

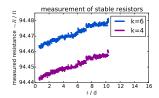

- 10 THMPs designated for forward endcap (74 *T*-PBBs, 6 *p*-PBBs)
- 2 THMPs designated for barrel test slice (12 T-PBBs, 4 p-PBBs)

Status:

- 15 fully equipped and tested THMP-mainboards 12 of which in cases
- 92 fully equipped and tested T-PBBs
- 25 fully equipped and tested p-PBBs
- Next steps:
 - Calibrate the THMPs (temperature dependent)
 - \rightarrow 8 cot 24 h measurements per THM \overline{P}

THMP Concept

- 4-wire measurement
- constant current $I = \frac{U_I}{R_I}$
- gain $G = 5 + \frac{200 \,\mathrm{k}\Omega}{R_G}$
- ullet offset voltage $U_{
 m off}$
- ADC conversion factor C

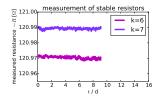

$$(R \cdot I \cdot G + U_{\text{off}}) \cdot C = R \underbrace{I \cdot G \cdot C}_{m} + \underbrace{U_{\text{off}} \cdot C}_{n} = N$$

 $ightarrow \sigma_R$ corresponds to 3.5 ADC channels for optimized values of U_I , R_I , R_G and $U_{\rm off}$

Drift

! There was an additional PBB-wide drift of unknown origin (t)!

- constant current $I_k(T,t) = \frac{U_l(T,t)}{R_{l,k}(T)}$
- gain $G_k(T) = 5 + \frac{200 \,\mathrm{k}\Omega}{R_{G,k}(T)}$
- offset voltage $U_{\text{off}}(T,t)$
- ADC conversion factor C



$$R_k \cdot \underbrace{I_k(T,t) \cdot G_k(T) \cdot C}_{m_k(T,t)} + \underbrace{U_{\text{off}}(T,t) \cdot C}_{n(T,t)} = N_k(T,t)$$

Drift

! There was an additional PBB-wide drift of unknown origin (t)!

- ✓ With the new configuration there is no drift anymore!
- constant current $I_k(T,t) = \frac{U_l(T,t)}{R_{l,k}(T)}$
- gain $G_k(T) = 5 + \frac{200 \, k\Omega}{R_{G,k}(T)}$
- offset voltage $U_{\text{off}}(T,t)$
- ADC conversion factor C

$$R_k \cdot \underbrace{I_k(T,t) \cdot G_k(T) \cdot C}_{m_k(T,t)} + \underbrace{U_{\text{off}}(T,t) \cdot C}_{n(T,t)} = N_k(T,t)$$

→ No reference resistors needed!

Summary and Outlook

- ✓ Almost all produced temperature sensors calibrated
- ✓ 305 approved temperature sensors (≈50%)
- ! Improving the fitting to temperature sensor data will most probably increase approved share
- ! Study hysteresis effect
- No drift visible anymore!
- ! Next: Temperature dependent calibration of all THMPs

Questions? Comments?