universitätbonn Simulations Reconstruction PID

Particle Identification in the Reaction $p\overline{p} \to \Xi^-\overline{\Xi}{}^+$

Christian Hammann

Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn

25.11.2016

Investigation of Ξ -Baryons

- only few exited Ξ*-baryons are confirmed
- quantum numbers of these states are mostly unknown

at first: groundstate Ξ $p\overline{p} \rightarrow \Xi^{-}\overline{\Xi}^{+} \rightarrow (\Lambda \pi^{-}) (\overline{\Lambda} \pi^{+}) \rightarrow (p\pi^{-}) \pi^{-} (\overline{p} \pi^{+}) \pi^{+}$

Simulations

Reconstruction PID Efficiencies

Simulations

Signal

•
$$\mathbf{p}\overline{\mathbf{p}} \to \Xi^-\overline{\Xi}^+ \to (\Lambda\pi^-) \left(\overline{\Lambda}\pi^+\right) \to (\mathbf{p}\pi^-) \pi^- \left(\overline{\mathbf{p}}\pi^+\right) \pi^+$$

- 500000 Events
- $E_{CMS} = 3.0 \, \text{GeV}$ $p_{\overline{p}} \approx 3.75 \, \text{GeV}$

Backgrund

- DPM generator
- 500000 Events
- $E_{CMS} = 3.0 \, {
 m GeV}$ $p_{\overline{
 m p}} pprox 3.75 \, {
 m GeV}$

Single Tracks

- 500000 single tracks e, $\mu,~\pi,~{\rm K},~{\rm p}$
- ${\, \bullet \,}$ uniform distribution, $p < {\rm 3.75 \, GeV}$

Simulations

Reconstruction PID

Efficiencies

Softwareversions

- PandaROOT Jan16
- FairROOT 15.11
- Fairsoft mar15
- marcos from \$VMCWORKDIR/marco/run

PID algorithms

- PidAlgoMvd
- PidAlgoStt
- PidAlgoEmcBayes
- PidAlgoDrc
- PidAlgoDisc
- PidAlgoMdtHardCuts

Reactionselection - Combining Tracks

• combine
$$\pi^- p \to \Lambda$$
, $\pi^+ \overline{p} \to \overline{\Lambda}$

Reactionselection - Combining Tracks

• combine
$$\pi^- p \to \Lambda$$
, $\pi^+ \overline{p} \to \overline{\Lambda}$
• combine $\pi^- \Lambda \to \overline{\Xi}^-$, $\pi^+ \overline{\Lambda} \to \overline{\Xi}^+$

Reactionselection - Combining Tracks

- combine $\pi^- p \to \Lambda$, $\pi^+ \overline{p} \to \overline{\Lambda}$
- combine $\pi^-\Lambda \to \Xi^-$, $\pi^+\overline{\Lambda} \to \overline{\Xi}^+$
- combine $\Xi^-\overline{\Xi}^+ \to \mathrm{CMS}$

Reconstructionefficiency

rack	recons	truction (Signal)		
	Efficiency			
	π^{-}	54.3 %		
	π^+	50.2 %		
	р	62.5 %		
	p	61.0 %		
	Λ	32.3 %		
	$\overline{\Lambda}$	28.8 %		
	Ξ-	18.0 %		
	$\overline{\Xi}^+$	15.0%		
	CMS	2.7 %		

Reactionselection - Cuts

- A mass: $1.115\,\text{GeV}\pm0.1\,\text{GeV}$
- $\bullet\,$ center of mass energy: 3.0 GeV $\pm\,$ 0.6 GeV
- total momentum: $p_t <$ 0.6 GeV; 2.5 GeV $< p_z <$ 4.9 GeV

universitätbonn Simulations Reconstruction PID

Information from a PID Detector

• conditional probability $P_X(S)$ for track S being of a particle of type X.

$$\vec{P}(S) = \begin{pmatrix} P_{\mathsf{e}} \\ P_{\mu} \\ P_{\pi} \\ P_{\mathsf{K}} \\ P_{\mathsf{p}} \end{pmatrix} \qquad \sum P_X(S) := 1$$

no information some information perfect information $\vec{P}(S) = \begin{pmatrix} 0, 2\\ 0, 2\\ 0, 2\\ 0, 2\\ 0, 2 \end{pmatrix} \qquad \vec{P}(S) = \begin{pmatrix} 0, 1\\ 0, 15\\ 0, 15\\ 0, 5\\ 0, 1 \end{pmatrix} \qquad \vec{P}(S) = \begin{pmatrix} 0\\ 0\\ 0\\ 1\\ 0 \end{pmatrix}$

universitätbonn Simulations Reconstruction PID

Combined Probabilities

Combination of Detectors

$$\vec{P}_{ges}(S) = \begin{pmatrix} P_{e,ges} \\ P_{\mu,ges} \\ P_{\pi,ges} \\ P_{\mathsf{K},ges} \\ P_{\mathsf{p},ges} \end{pmatrix} = \begin{pmatrix} P_{e,MVD} \cdot P_{e,STT} \cdot \dots \\ P_{\mu,MVD} \cdot P_{\mu,STT} \cdot \dots \\ P_{\pi,MVD} \cdot P_{\pi,STT} \cdot \dots \\ P_{\mathsf{K},MVD} \cdot P_{\mathsf{K},STT} \cdot \dots \\ P_{\mathsf{p},MVD} \cdot P_{\mathsf{p},STT} \cdot \dots \end{pmatrix} / N$$

Examples

$$\vec{P} \otimes \begin{pmatrix} 0, 2\\ 0, 2\\ 0, 2\\ 0, 2\\ 0, 2 \end{pmatrix} = \vec{P} \qquad \qquad \vec{P} \otimes \begin{pmatrix} 0\\ 0\\ 0\\ 1\\ 0 \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0\\ 1\\ 0 \end{pmatrix}$$

PID Probabilities DRC - Protons

universität**bonn**

Barrel Cherenkov

P [GeV]

Simulations

Reconstruction

PID

Efficiencies

P [GeV]

0.5

MISICP

Flux

- particle species are produced in different numbers
- can be used like information from an additional detector
- depends on reconstruction and applied cuts
- assumtion: dominated by background

universitätbonn Simulations Reconstruction PID

PID Probabilities Alle - Protons

Efficiency and Specificity

Efficiency for Particlespecies X

 $E_X = P$ (identified as $X \mid \text{was } X$)

 $E_X = \frac{\text{number of correct tracks after cut}}{\text{number of correct tracks before cut}}$

Efficiency and Specificity

Efficiency for Particlespecies X

 $E_X = P$ (identified as X | was X)

 $E_X = \frac{\text{number of correct tracks after cut}}{\text{number of correct tracks before cut}}$

Specificity for Particlespecies X

 $S_X = P$ (identified as not X | was not X)

 $S_X = 1 - \frac{\text{number of wrong tracks after cut}}{\text{number of wrong tracks before cut}}$

Efficiency and Specificity

Efficiency and Specificity

universität**bonn** Efficiencies

MICLEP

Efficiency and Specificity

Antiprotons Effizienz 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1F 0<u>0</u> 0.1 0.7 0.8 0.9 Spezifitaet 0.2 0.3 0.4 0.5 0.6

without

DRC red DSC blue EMC green MDT purple MVD brown STT cyan

PID Efficiencies

Simulations

Reconstruction

universität**bonn**

PID

Efficiencies

	no PID	> 0.25	> 0.50
π^{-}	54.3%	49.1%	47.1%
π^+	50.2%	45.5%	43.5%
р	62.5%	34.8%	27.4%
p	61.0%	34.4 %	27.6%
Λ	32.3 %	12.7%	9.2 %
$\overline{\Lambda}$	28.8 %	11.9%	8.8%
Ξ-	18.0%	6.4 %	4.4 %
$\overline{\Xi}^+$	15.0%	5.7%	4.0 %
CMS	2.7~%	0.3%	0.12%

Outlook

- solve problems with Cherenkovdetectors
- vertexreconstruction
- kinematic fit
- exited Ξ^*
- ...

