

Space charge studies for the ESS Ionization Profile Monitor

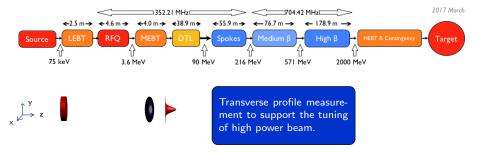
Optimus+

www.cea.fr

P. Abbon¹, <u>F. Belloni¹</u>, F. Benedetti¹, X. Coppolani¹, F. Gougnaud¹, C. Lahonde-Hamdoun¹, J. Marroncle¹, V. Nadot¹, L. Scola¹, C. Thomas²

CEA Saclay, Gyf-sur-Yvette, France
 ESS, Lund, Sweden

European Spallation Source



Facility	Protons/s	Target
n_TOF (CERN, Europe)	2· 10 ¹²	Pb
JSNS (JPARC, Japan)	2· 10 ¹⁴	W
LANSCE (Los Alamos, USA	$3.2 \cdot 10^{14}$	W
SNS (Oak Ridge, USA)	2.5· 10 ¹⁷	Hg
ESS (Lund, Europe)	3.9· 10 ¹⁷	W

- Life science (Macromelecules, for instance proteins, study)
- Material science
- Imaging (archeology)
- Fundamental particle physics

NPM/IPM

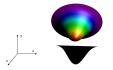
REQUIREMENTS for the BEAM TRANSVERSE PROFILER:

- \blacksquare stand high proton beam intensity (I $_{peak} = 65$ mA, Power $_{peak} = 125$ MW)
- have minimum impact on proton beam (avoid proton scattering and proton induced nuclear reactions)
- provide enough statistics (capability of measuring the profile per pulse at nominal beam & vaccum conditions)
- no cooling forseen
- 1 detector in Spokes, 3 in Medium β , 1 in High β
- lacksquare total measurement error in the RMS extension of the beam of less than \pm 10% (L4 requirerment)

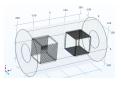
Non-interceptive Profile Monitors: how?

IPM: Ionization Profile Monitor

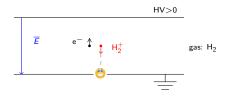
PRINCIPLE OF OPERATION

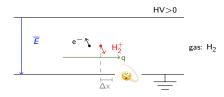

proton beam ionizes residual gas

 \overrightarrow{E} separates e⁻/ions

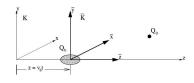

charge collection on read-out

2 cages for 2D beam profile measurement





Space charge effect


REMINDER:

POSSIBLE CORRECTION METHODS

- Add magnetic field X
- ➤ High electric field ✓ 🗶
- Software correction

SOFTWARE CORRECTION

R. Wanzenberg, Nonlinear Motion of a Point Charge in the 3D Space Charge Field of a Gaussian Bunch.

A Gaussian bunch with total charge \mathbf{Q}_b is moving with the velocity \mathbf{v}_b along the z-axis of the laboratory frame K. The electric field of the bunch is calculated in the comoving frame and transformed into an electric and magnetic field in the laboratory frame K where the Lorentz-Force on a point charge \mathbf{Q}_0 is calculated.

Correction code

CODES:

MATLAB (C. Thomas)

C++ (translation of the MATLAB code)

SIMULATION STEPS:

a single electron (or ion) is created in the center of the IPM: $x = Gaus(0, \sigma_x)$

$$y = Gaus(0, \sigma_y)$$

 $z = Unif(-2.5 m)$

z = Unif(-2.5 mm, 2.5 mm)

- in a first moment it is assumed that at creation time the electron (or ion) is at rest
- a proton bunch of total charge Q $= 1.7~{\rm e}^{-10}~{\rm C}$ and kinetic energy E $_p$ is considered
- a time step dt is chosen by the program
- the displacement $d\overline{x}$ of the electron (or ion) is calculated by solving the motion equation (adaptive Runge Kutta Fehlberg method)

- another time step dt is chosen by the program
- the displacement $d\overline{x}$ of the electron (or ion) is calculated by solving the motion equation (adaptive Runge Kutta Fehlberg method)

- when the y position of the electron (or ion) $y \ge y_{collection\ plate}$, the simulation stops
- at every dt passed, the following variable values were saved: t, x, y, z, v_x , v_y , v_z , a_x , a_y , a_z , fields info (lab and comoving frame)
- t and y are plotted and fitted with a spline to find the time t_{stop} when the electrode was reached
- t and x are plotted and fitted with a spline. $x(t_{stop})$ is extracted
 - the procedure is iterated N times, to reach a statistical uncertainty of (100 $\frac{\sqrt{N}}{N}$) %

Demo

ESS code parameters

ESS PROTON BEAM PARAMETERS:

Energy : [90,2000] MeV

Current peak: $62.5 \text{ mA} = 0.0625 \times 6.242 \times 10^{18} \text{ p/s}$

Pulse length: 2.86 ms

Pulse frequency: 14 Hz (duty cycle 4%)

Bunch frequency: 352.21 MHz

IPM GAS PARAMETERS:

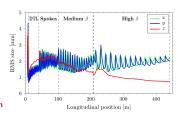
Composition: H₂ (79%), CO (10%), CO₂ (10%), N₂ (1%) [source: ESS vacuum group]

Pressure: 10⁻⁹ mbar

CHOSEN CODE PARAMETERS:

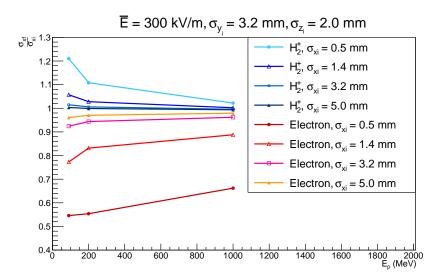
Proton energies: 90 MeV, 200 MeV, 1 GeV

Proton bunch intensity: 62.5 mA/ 352.21 MHz = $1.1 \ 10^{+9}$ p/bunch

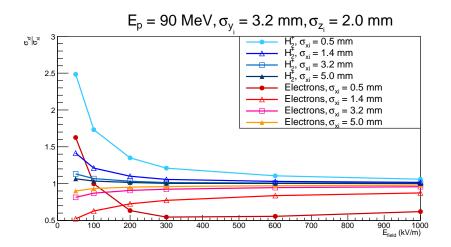

 $\sigma_{\rm X} = 0.5$ mm, 1.4 mm, 2.3 mm, 3.2 mm, 4.1 mm, 5 mm, 10 mm

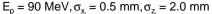
 $\sigma_y = 0.5$ mm, 1.4 mm, 2.3 mm, 3.2 mm, 4.1 mm, 5 mm, 10 mm

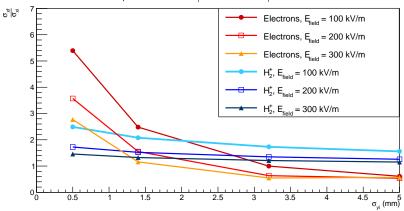
 $\sigma_z = 0.75 \text{ mm}, 2.0 \text{ mm}, 10 \text{ mm}$


Ionization products: e^- , H_2^+ , N_2^+ , CO^+ , CO_2^+

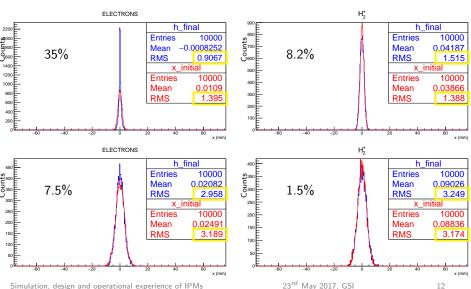
■ E: 50 kV/m, 100 kV/m, 200 kV/m, 300 kV/m, 600 kV/m, 1000 kV/m


Results: $f(E_p)$


Results: $f(\overline{E})$



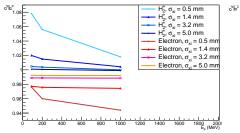
Results: $f(\sigma_{v_i})$

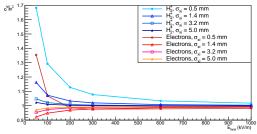


Results: $\sigma_{x_i} = \sigma_{y_i} \& \sigma_{z_i} = 2 \text{ mm}, \overline{E} = 300 \text{ kV/m}, E_p = 90 \text{ MeV/m}$

1st assumption review: sampling along z

SIMULATION STEPS (Slide 9):

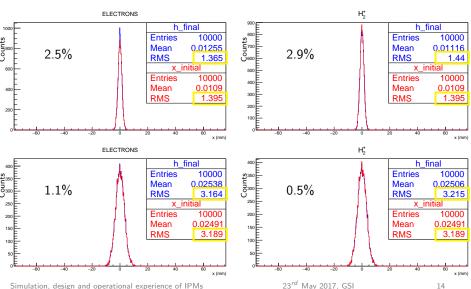

- ..
- **a single electron (or ion)** is created in the center of the IPM:


$$x = Gaus(0, \sigma_x)$$

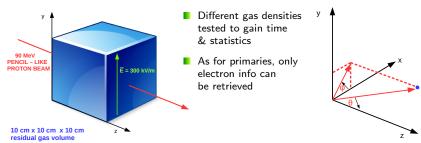
 $y = Gaus(0,\sigma_y)$

 $z = Unif(-2.5 mm, 2.5 mm) \rightarrow z = Unif(-5 cm, 5 cm)$

· ...



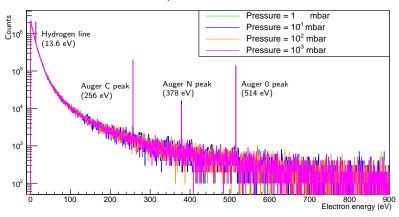
Results: $\sigma_{x_i} = \sigma_{y_i} \& \sigma_{z_i} = 2 \text{ mm}, \overline{E} = 300 \text{ kV/m}, E_p = 90 \text{ MeV/m}$


2nd assumption review: speed

SIMULATION STEPS (Slide 9):

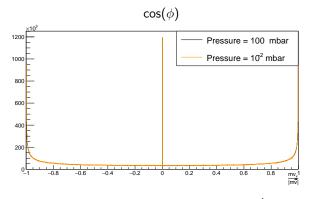
- ...
- in a first moment it is assumed that at creation time the electron (or ion) is at rest
- ...

Check assumption validity with Garfield++ (toolkit for simulations of particle detectors with σ as and semi-conductors as sensitive medium)



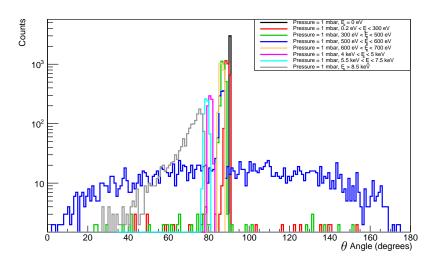
2nd assumption review: speed

Electron speed distribution at creation



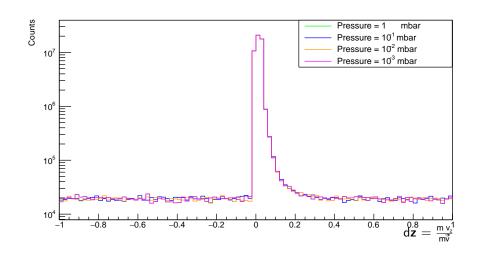
Assumption review: angular distribution

- In GARFIELD++ the ϕ (azimuthal) angle is uniformly sampled in $[0,2\pi)$ \Rightarrow same distribution for $\cos(\phi)$ & $\sin(\phi)$.
- At higher gas pressures more electrons are emitted with lower speed



dx =

Assumption review: angular distribution



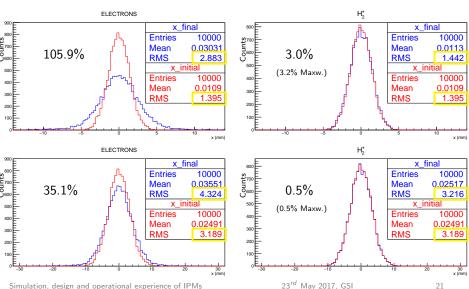
Assumption review: angular distribution

Assumption review: simulations

✓ GARFIELD++ provides different momenta distribution of the primary electrons for different incident proton beam energies and electric fields (\mathbf{v}_e , θ_e , ϕ_e).

ELECTRONS:

- $\mathbf{E}_p = 90 \; \mathsf{MeV}$
- $\overline{E} = 300 \text{ kV/m}$
- $\mathbf{z}_{i_{el}}$ uniformly \in [-5 cm, 5 cm]
- $\sigma_{x_{i_{el}}} = \sigma_{y_{i_{el}}} = 0.5 \text{ mm}, 1.4 \text{ mm}, 3.2 \text{ mm}, 4.1 \text{ mm}, 5.0 \text{ mm}, 10.0 \text{ mm}$
- $\sigma_{z_{i_{el}}} = 0.75$ mm, 2.0 mm, 10.0 mm
- $\mathbf{v}_{i_{al}}$ from GARFIELD++
- \blacksquare (θ, ϕ) from GARFIELD++


IONIZED MOLECULES:

- $\mathbb{E}_p = 90 \text{ MeV}$
- $\overline{E} = 300 \text{ kV/m}$
- $\mathbf{x}_{i_{ion}} = f(\sigma_{x_{i_{ion}}}), y_{i_{ion}} = f(\sigma_{y_{i_{ion}}})$
- $z_{i_{ion}}$ uniformly \in [-5 cm, 5 cm]
- $\sigma_{x_{i_{ion}}} = \sigma_{y_{i_{ion}}} = 0.5 \text{ mm}, 1.4 \text{ mm}, 3.2 \text{ mm}, 4.1 \text{ mm}, 5.0 \text{ mm}, 10.0 \text{ mm}$
- $\sigma_{z_{i_{ion}}} = 0.75 \text{ mm}, 2.0 \text{ mm}, 10.0 \text{ mm}$
- $\mathbf{v}_{i_{ion}}$ assuming a) $\mathbf{v}_{i_{electron}} \cdot \mathbf{m}_{electron} = \mathbf{v}_{i_{ion}} \cdot \mathbf{m}_{ion}$ b)Maxwellian energy distribution
- $(\theta, \phi) \text{ from GARFIELD}++ \\ 23^{rd} \text{ May 2017, GSI}$

Results: $\sigma_{x_i} = \sigma_{v_i} \& \sigma_{z_i} = 2 \text{ mm}, \overline{E} = 300 \text{ kV/m}, E_p = 90 \text{ MeV/m}$

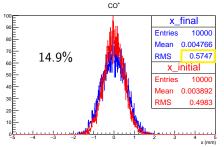
The results from the IPM simulation code with the above initial conditions show:

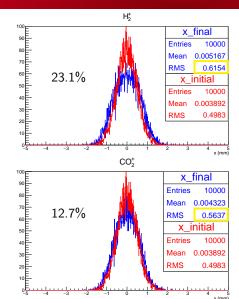
- the space charge effect is lower for higher proton energies
- the space charge effect is higher for lower beam sizes (smaller than nominal conditions)
- ionized molecules are less affected by space charge effects than electrons
- the initial momentum with which particles are created can be neglected for ionized molecules, but not for electrons
- if electrons are detected the L4 requirements are not met
- if ionized molecules are detected, the L4 requirements are not met
- as for ionized molecules here above H₂⁺ was meant. If the totality of the ionized molecules is considered with the appropriate weight, the previously given error improve by few %.

Thanks

BACKUP SLIDES

Results: heavier ion comparison

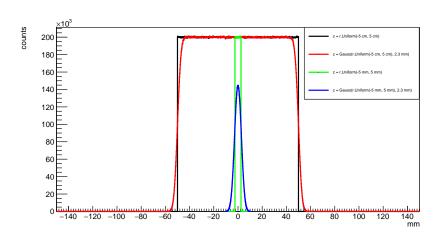



Initial conditions:

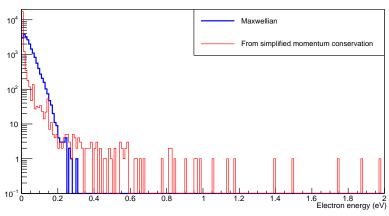
$$\overline{E} = 600 \text{ kV/m}$$
 $E_p = 90 \text{ MeV}$
 $\sigma_{x_i} = \sigma_{y_i} = 0.5 \text{ mm}$
 $\sigma_{z_i} = 0.75 \text{ mm}$
 $z_i \in [-2.5 \text{ mm}, 2.5 \text{ mm}]$

Remarks:

 $\mathsf{m}_{N_2} \approx \mathsf{m}_{CO}$ heavier particle = smaller Δx



Choice of the sampling along the z axis



Assumption review: simulations

Ion speed distribution at creation

