

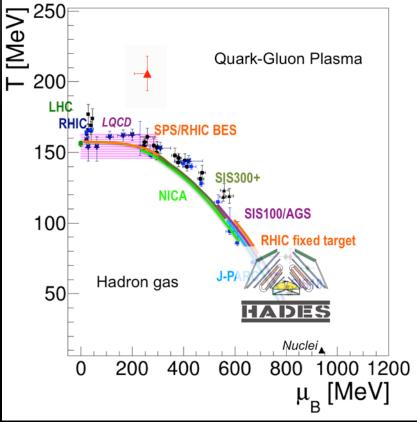
Jahrestagung des Komitees Hadronen und Kerne Bad Honnef, 1-2 Dezember 2016

Bericht zu HADES

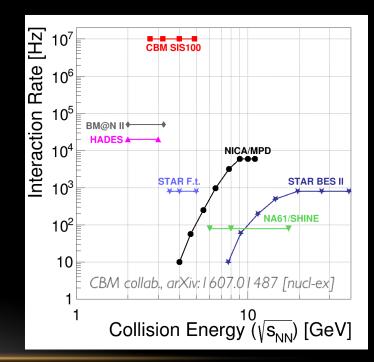
Tetyana Galatyuk for the HADES Collaboration

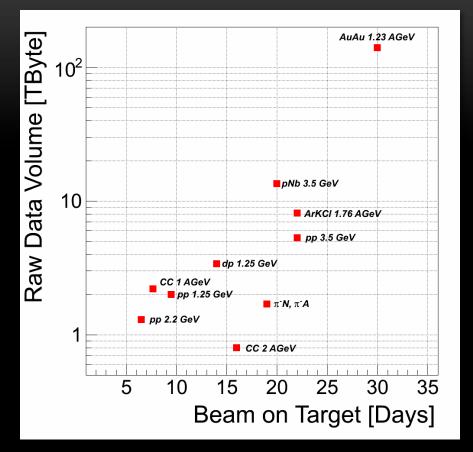
Technische Universität Darmstadt / GSI Helmholtzzentrum für Schwerionenforschung

The HADES Collaboration


- → IOP SAS, Bratislava, Slovakia
 - → INR & ITEP & MEPHI, Moscow, Russia
 - → LIP & ISEC, Coimbra, Portugal
 - → SIP JUC Cracow, Poland
 - → GSI, Damstadt, Germany
 - → TU Darmstadt, Germany
 - \rightarrow HZDR, Dresden, Germany
 - → JINR Dubna, Russia
 - → GU Frankfurt, Germany
 - → JLU Giessen, Germany
 - → TU München, Germany
 - → Lisboa, Portugal
 - → Nicosia, Cyprus
 - → IPN Orsay, France
 - → NPI CAS, Rez, Czech Rep.
 - → USC S. de Compostela, Spain
 - → FZ Jülich, Germany (James Ritman)
- → U Wuppertal, Germany (Karl-Heinz Kampert)

~100 collaborators

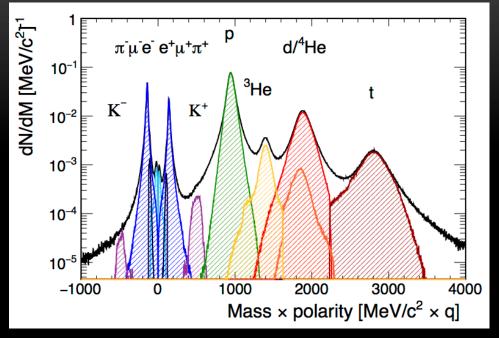

Searching for landmarks of the QCD matter phase diagram


- $\hfill\square$ HADES explores the highest- μ_{B} region
- □ Very competitive w.r.t. interaction rate
- □ HADES is part of the beam energy scan
 → marks lowest point of the excitation function

Observables:

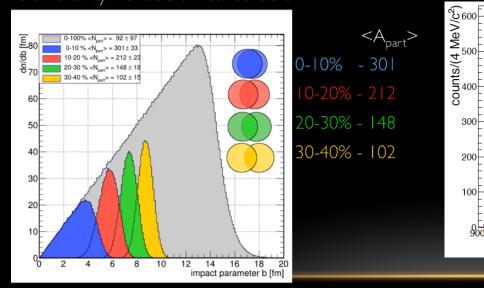
- □ Flavor production (multi-strange, *charm*)
- Emissivity of matter (dileptons)
- □ Higher moments of e-b-e multiplicities (B, S, Q)

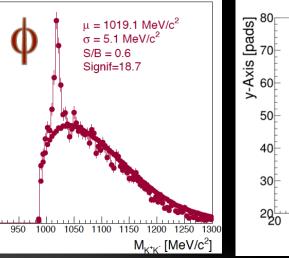
HADES strategy

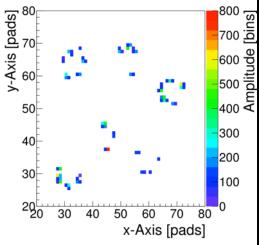

- \Box Heavy-ion, π and p beams
- Excitation function for low-mass lepton pairs and (multi-)strange baryons and mesons

Various aspects of baryon-resonance physics
 Time-like electromagnetic transition form factors (p baryon coupling)
 Hyperon physics

Special emphasis on sub-threshold particle production

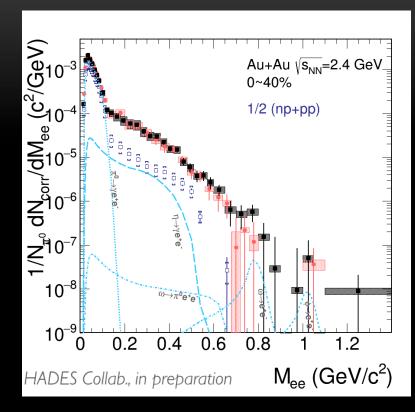

2002–2009: light A+A, p+p, n+p, p+A 2011–2014: Au+Au, π -induced reactions 2018–2020: FAIR phase 0 \rightarrow high-statistics $\pi+p/\pi A$, p+A and A+A


HADES performance



Particle identification by means of: Velocity Momentum dE/dx in MDC and ToF RICH information

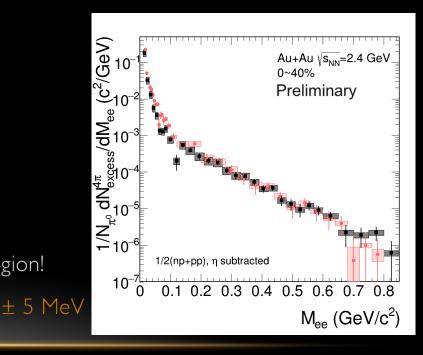
Centrality: Glauber calculation

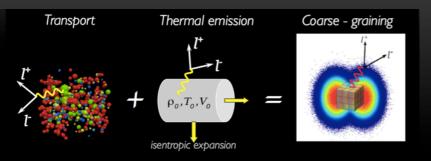


Emissivity of matter

"If you want to detect something new, build a dilepton spectrometer"

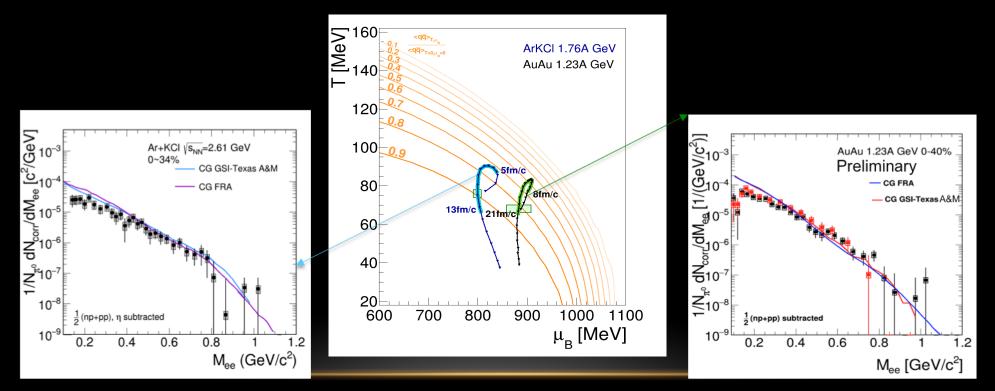
S.T.in


Excess radiation in Au+Au collisions

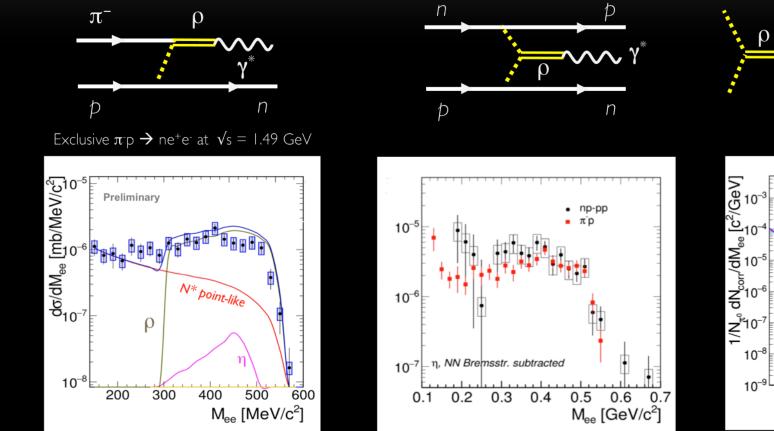

- □ Inclusive excess mass spectrum
 - □ Fully corrected for acceptance
 - All known e⁺e⁻ sources subtracted
- Almost exponential spectrum up to vector meson region!

□ Fit to $dN / dM \propto M^{3/2} \times e^{-M/T} \rightarrow T_{\text{Emitting Source}}$

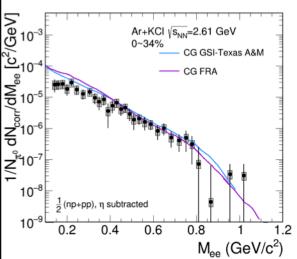
- Medium radiation goes beyond what is expected from a superposition of incoherent NN collisions and F.o. sources
- □ Strong excess (~A_{part}^{1.3})
 - □ Regeneration of baryonic resonances
 - □ Subsummed into spectral functions
- Dilepton chronometer of the collision time


Thermal dilepton emission at SIS18?

- Bulk evolution from microscopic transport
- $\hfill \hfill \hfill$

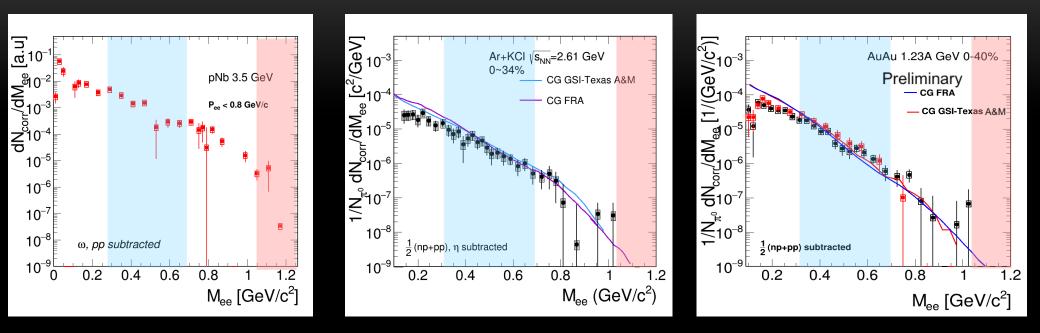

CG FRA: Phys. Rev. C 92, 014911 (2015) CG GSI-Texas: Eur.Phys.J. A52 (2016) no.5, 131 HADES ArKCI F.o.: Phys.Rev.C 84 (2011) 014902 Condensate: B.J. Schaefer and J. Wambach Trajectories: F. Seck extracted from UrQMD

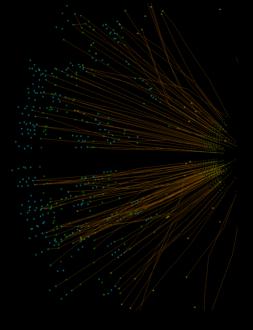
- Coarse-graining method works at low energies
- Excess yield driven by temperature and size/ lifetime (four-volume integral)
- $\hfill \square$ Thermal emission governed by the in-medium ρ spectral function (VDM)
- □ Broadening of the in-medium ρ driven by ρ -baryon coupling → supports medium effects at UrHIC!


The role of virtual pions in dilepton production

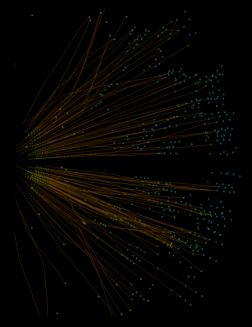
Three different collision systems, three surprises but likely the same underlying mechanism

 ρ meson contribution from the measured $\pi^+\pi^-$ channel and using the strict VMD


Data: HADES collab., PLB 690 (2010) 118 R. Shyam and U. Mosel, PRC 82:062201, 2010 M. Bashkanov, H. Clement, Eur. Phys. J.A50, 107, (2014)

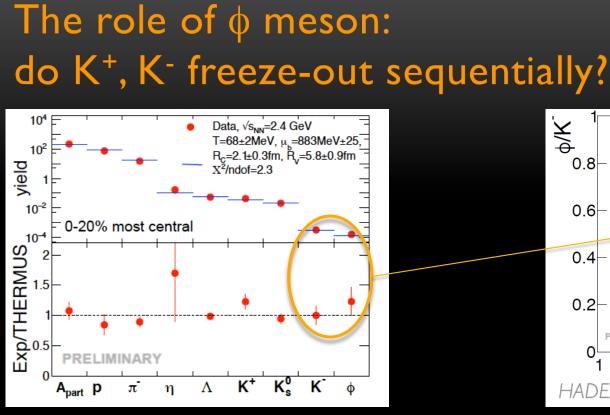

R

CG FRA: Phys. Rev. C 92, 014911 (2015) CG GSI-Texas A&M: Eur.Phys.J. A52 (2016) no.5, 13


What Next?

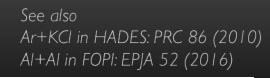
- □ 0.3<M<0.7 GeV/c²: Rapid increase of relative yield reflects the number of Resonances regenerated in fireball → HADES "R-clock"
- HADES can explore $M > 1.1 \text{ GeV/c}^2$
 - \square Measure changes in yield, shape, slope in high statistic $\pi p \& \pi A$; pp & pA; AA
 - \square ρ -al spectral functions

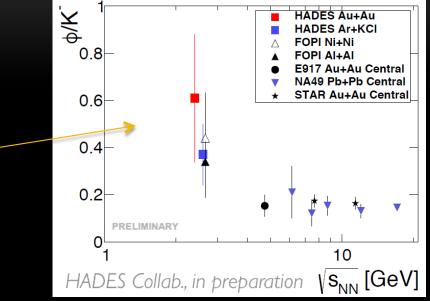
Final state "Hadron-chemistry"


HADES Collab., in preparation

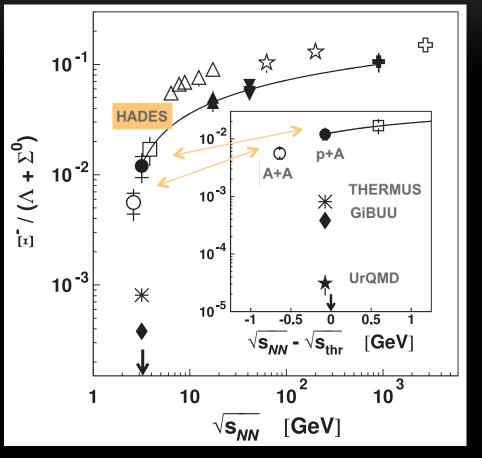
Strange particle production Au+Au collisions at 1.23A GeV

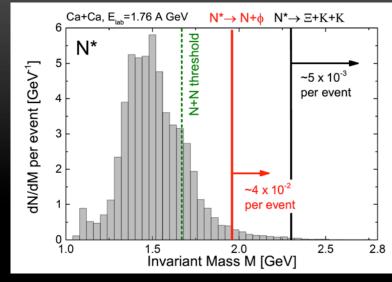
0.3<u>×10⁻³</u> Mult / <A_{part}> $\alpha_{wt} = 1.45 \pm 0.15$ 0.25 $\alpha_{\rm kc}$ = 1.34 ± 0.26 α_{\star} = 1.55 ± 0.58 0.15 0. Kx40 0.05 0 x40 50 250 300 200 0 100 150


- First comprehensive set of results on strange particle productions at this low beam energy
- □ Far below (free NN) threshold
 → strong constraints on production mechanism
- Particle yields rise with A_{part} faster than linear
- Same α for all strange particles! → no hierarchy in production threshold?


 $NN \rightarrow N\Lambda K^{+} \qquad E_{thr} = 1.58 \text{ GeV}$ $NN \rightarrow NNK^{+}K^{-} \qquad E_{thr} = 2.49 \text{ GeV}$ $NN \rightarrow NN\phi \qquad E_{thr} = 2.59 \text{ GeV}$

HADES Collab. Eur.Phys.J. A52 (2016) no.6, 178

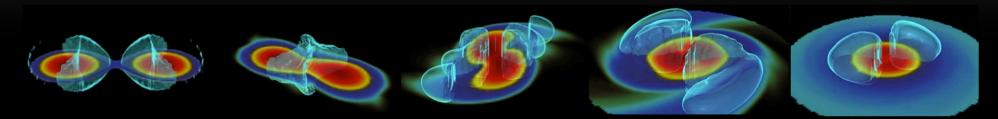

- \Box Grand canonical ensemble (T, μ_B , V and sometimes γ_s)
- Strangeness canonically suppressed
- \Box Thermal equilibrium also at low energies (high μ_B)?
- What is the mechanism responsible for system thermalization?

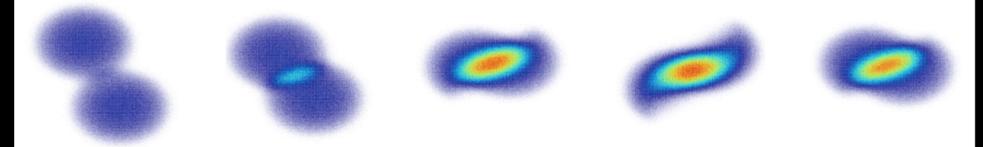


- Sizeable increase of \$\phi\$ meson to \$K\$⁻ ratio around production threshold 30% of \$K\$⁻ are from \$\phi\$ decays
- □ Unique freeze-out criteria when \$\overline\$ decay kinematics is taken into account \$\rightarrow\$ no evidence for sequential freeze-out of K⁺, K⁻ \$\rightarrow\$ support for statistical model

What is so strange about Ξ^- ?

HADES collab. PRL 103 (2009) 132310 HADES collab. PRL 114 (2015) 212301




J. Steinheimer et al., J.Phys. G43 (2016) no.1, 015104

- □ Multi-strange baryons (Ξ, Ω) are expected to be a sensitive probe for "Compressed Baryonic Matter".
- HADES observes unexpectedly large production cross sections in Ar+KCl and in pNb
- Attempts to theoretically describe the production based on the decay of heavy resonances looks promising but has to be further scrutinized.
- \Box Reference measurements needed \rightarrow p+p run
 - □ Highest proton beam momentum which can be used for stable runs: $B\rho = 5.4 \text{ GeV/c} \rightarrow E_{kin} = 4.5 \text{ GeV}$ ($\sqrt{s} = 3.47 \text{ GeV}$) → strangeness production, i.e. cascade

Cosmic matter in the laboratory

http://flash.uchicago.edu/~calder/neutron.html

Images: Florian Seck Bass et al., Prog. Part. Nucl. Phys. 41 (1998)

 \square High densities: ρ_{max} up to 3 ρ_{0}

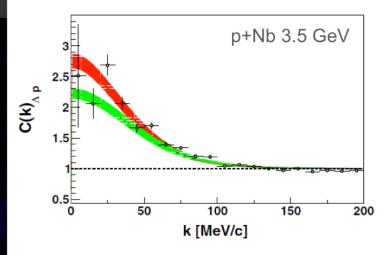
□ Moderate temperatures: T = 50 - 100 MeV

Matter in Compact Stars

□ Hyperons in neutron stars: new vistas?

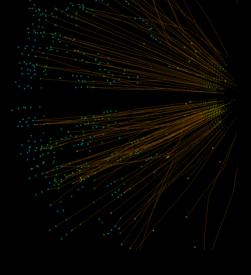
- Many models with hyperons fail to describe a 2M_o pulsar mass
- □ Breakdown of baryonic models at high densities?
- □ Onset of a new phase not based on baryon d.o.f.?

QCD matter in compact stars


 Composition of high-density neutron star cores: unknown (green band)

□ Input needed from relativistic heavy-ion experiments

HADES

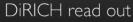

- \Box AN, Ξ N further studies in high statistic p+Ag in 2018
- □ Data support in-medium repulsive vector K⁰ potential ~40 MeV [PRC 82 (2009) 044907; PRC 90 (2014) 054906]

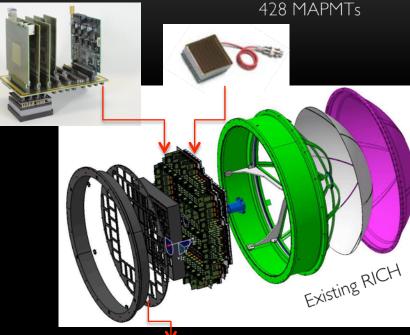
$\Lambda\text{-N}$ correlation function

HADES collab., PRC 94 (2016) no.2, 025201

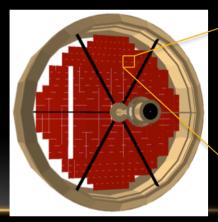
Upgrade projects

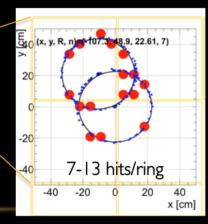
RICH 700: joint development CBM & HADES


Participating institutes: TU München, U. Gießen, GSI, U. Wuppertal

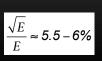

- Multi anode photo tubes replace Csl based gaseous UV Photon detector

 close pair rejection ~4 times better
- Design completed
- □ Test chamber installed at GSI
- □ ~450 MAPMTs tested
- Read out chain running
- □ Fully implemented in software
 - RICH installation: early summer 2017

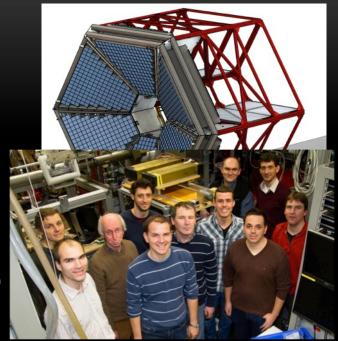



First measurements of single photons

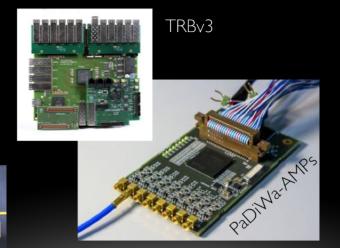
Support frames



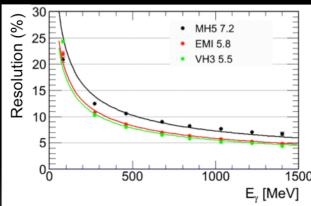
Electromagnetic Calorimeter for HADES

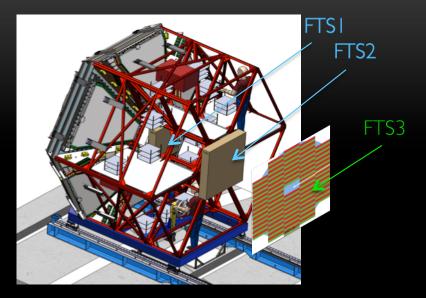

Participating institutes: TŪ Darmstadt, U Krakow, INR/RAS Moscow, INP/CAS Rez, TU Munich, IP Bratislava, MEPhi Moscow and GSI

- □ Replaces Pre-Shower detector
- Enables photon measurements



- □ Electron-to-pion separation for p>0.4 GeV/c
- □ Main frame: design completed, installation 2017
- □ Lead-glass modules (OPAL)
- □ Hamamatsu 3" PMT delivery ongoing (2 sectors)
- Read-out: PaDiWa-AMPS + TRBv3 (mass production ~6 month)


5 sectors ready for 2018 beam times


Tests at MAMI facility (8 energies in one measurement)

Forward Tracker: synergy project with PANDA

Participating institutes: JU Krakow, FZ Jülich, IPNO Orsay, LIP Coimbra

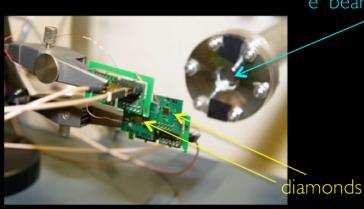
- Enhance HADES capabilities for exclusive channels
- □ Hyperon production and EM decays
- □ Angular acceptance: $\theta \le 6.5^{\circ}$
- Reconstruction of straight tracks (~150 μ m, angular resolution ~1 mrad for 1 GeV/c protons)

- □ Straw tubes & RPC: PID via dE/dx & ToF
- Double layer of straw (compatible with stations for the PANDA Forward Tracker)
- Straws production by FZ Juelich and mechanics components by Kraków
- **G** FTS3: similar to the small cells of the current RPC

Towards new MDC front-end electronics

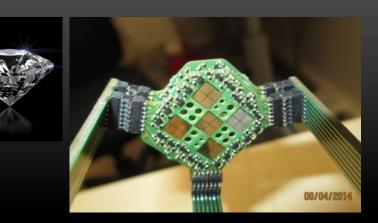
Participating institutes: U. Frankfurt, GSI, LIP Coimbra

- Aging prevention: Inert gas mixture Ar/CO_2
- FEE upgrade: Alternatives to ASD8 chip & multi-hit TDC
- SIS100 : Redundancy & Precision → new MDC II chambers for HADES


- New gas mixture Ar/CO₂ validated with high load (emulated by a X-ray tube), successful qualification of additive (water) to minimize charging-up.
- State-of-the-art FEE concepts are being evaluated based on the PASTTREC ASIC and a FPGA based multi-hit TDC
- □ Test chamber: design concluded, construction started.

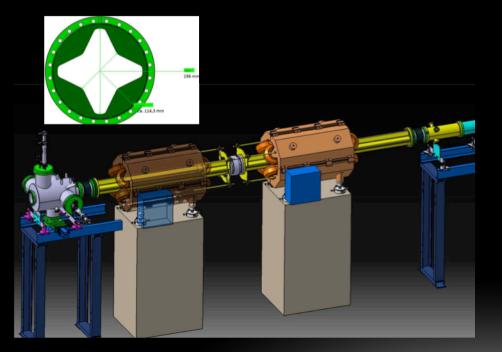
No Shower, new RICH and MDC "conventional DAQ": 90 kHz

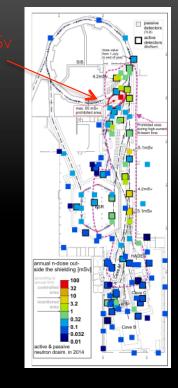
T0 diamond detectors


- □ T0 determination < 50 ps
- □ Precise beam profile measurement in X and Y positions
- Beam halo monitoring

 e^{-} beam o $E_{e^{-}} = 70 - 130 \text{ MeV}$

- o Beam currents: up to 20μ A
- o Beam spot: $2 \times 2 \text{ mm}^2$
 - □ New design: 2 stage amplification
 - Booster amplifiers inside vacuum, close to the 1st stage
 - □ PCB design in preparation
 - □ Test beam time March 2017 (Jülich)
 - Test place set-up at S-DALINAC (part of GRK2128 "AccelencE")


Mosaic scCVD diamond detector $4 \times 10^5 \text{ } \pi/\text{s}$, $\Delta \tau = 200 \text{ ps!}$


π beam improvements

- □ High current experiment in July/August 2014
 - \Box 4x10⁵ π /spill at 0.69 GeV/c on HADES target were reached with ~10^{11} N_2 ions/spill

BUT

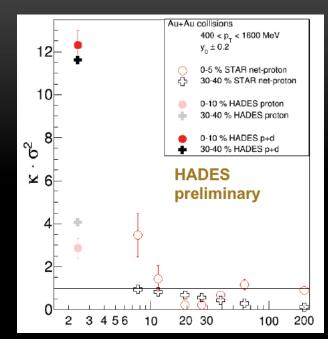
□ Too high radiation level in NE5 and SIS tunnel (Intensity had to be reduced to $1.5 \times 10^5 \, \pi$ /spill)

- Shielding
- □ Increased beam aperture: 110 → 125 mm
- Improved extraction
- □ Improved beam transport
- Beam diagnostic of primary beam (to be installed)

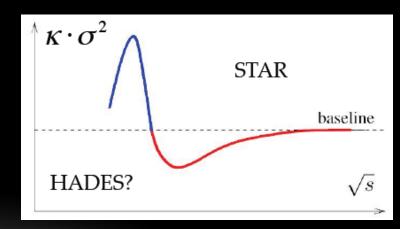
"... In order to increase the extraction efficiency of the SIS18 (only 50-60%, activation issue in 2014), a new position for the electrostatic extraction septum is foreseen"

Encouraging prospects for studying QCD matter in the region of finite μ_B with HADES

- Unique possibility of characterizing properties of baryon dominated matter with rare and penetrating probes:
 - Long-lived states of compressed resonance matter are produced in heavy-ion collisions in the few-GeV energy regime
 - This state of matter might be much more exotic than a hadron gas
- HADES is at the moment the only facility world-wide which combines a pion beam with dilepton spectrometry, an excellent particle identification and good secondary vertex reconstruction capabilities.

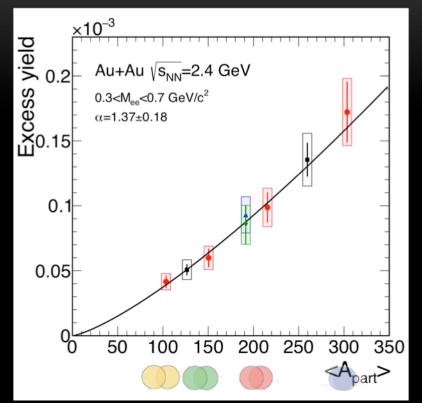

Roadmap:

- o 2016-18: upgrade HADES
- o 2018-2021: we anticipate three long runs, e.g.:
 - π +(CH₂)_n/LH₂: baryon em transition form factors, baryonic resonances with strangeness
 - p+A/p+p: strangeness/vector mesons in medium
 - A+A: medium system at maximal energy
- o 2021⁺: move HADES to SIS100 \rightarrow continuation at higher beam energies

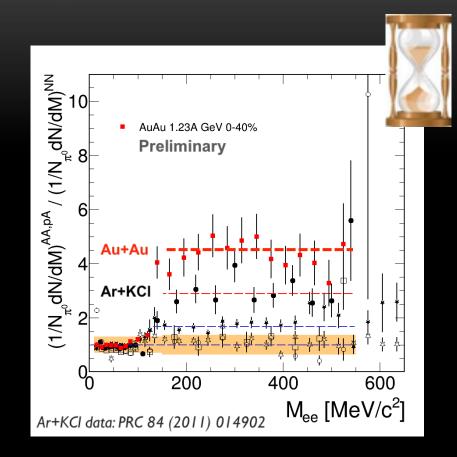

Vielen Dank für Ihre Aufmerksamkeit

Proton number fluctuations

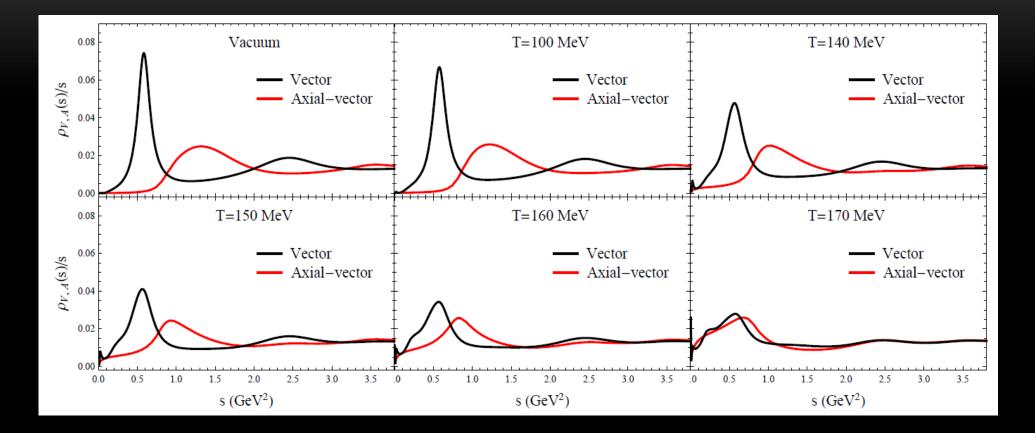
- Related to phase structure of hot and dense matter (e.g. spinodal decomposition of the mixed phase)
- Search for the critical point
- Higher moments probe the tails. Statistics!
 Striking signal
 EALR energy data are missing
 - → FAIR-energy data are missing
- Need to control:
 - □ Fluctuations to due baryon stopping
 - □ Role of heavier fragments
 - □ Centrality resolution, ect.


HADES: R. Holtzman, SQM16 STAR: X. Luo et al., PoS (CPOD14) 2016

M. Stephanov, Phys. Rev. Lett. 107 (2011) 052301

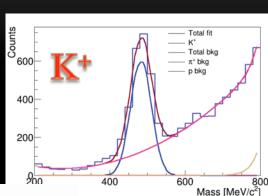

Centrality and system size dependence of the excess

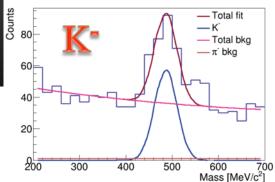
Excess radiation $0.3 < M < 0.7 \text{ GeV/c}^2$

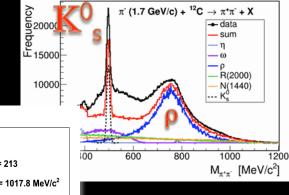


 \square Strong excess (~A_{part}^{1.3}, interplay V $\otimes \tau_{coll})$

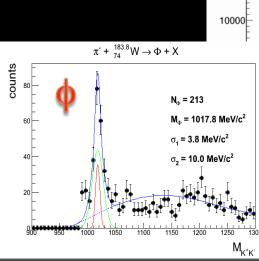
Dilepton chronometer of the collision time




- Medium radiation goes beyond what is expected from a superposition of incoherent NN collisions
 - → Regeneration of baryonic resonances
 - → Subsummed into spectral functions



(Anti)Kaon in Medium πA experiments Jul-Aug 2014


- Measurement of kaon (K⁺, K⁻) absorption in cold nuclear matter
 A kaon-nucleon potential
- Meson absorption in cold nuclear matter (\$)

- \Box π momentum I.7 GeV/c
- C and W targets
- Evidence of K⁻ disappearance in four (θ , p, p_T, y) observables

