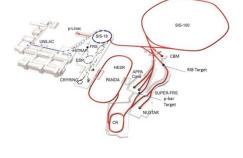

Universal Linear Accelerator UNILAC

post-stripper is in operation since more than 40 years. Its age causes increase of down time

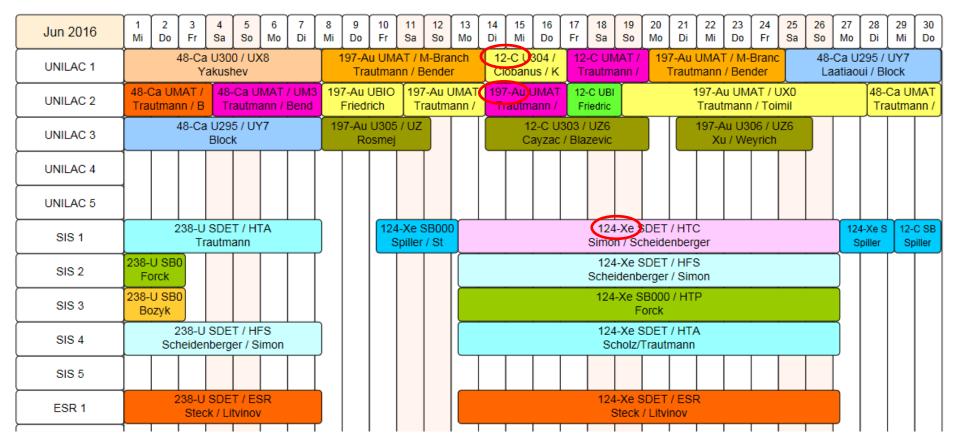


Future Requirements to UNILAC

ion A/q	≤ 8.5, i.e. ²³⁸ U ²⁸⁺	
beam current (pulse) * A/q	1.76 (0.5% duty cycle)	mA
input beam energy	2.2	keV/u
output beam energy	3.0 - 11.7	MeV/u
normalized total output emittance, horizontal / vertical	0.8 / 2.5	mm mrad
beam pulse duration	≤ 1000	μs
beam repetition rate	≤ 10	Hz
operating frequency	36.136 / 108.408	MHz
length	≈ 115	m

design parameters after post-stripper replacement

- main task of UNILAC is to serve as injector for FAIR
- all ions with A>1 will pass the UNILAC's post-stripper DTL
- fundamental concept for beam delivery to FAIR: very few pulses at very high intensity
- these few shots must be of best achievable quality



June 2016

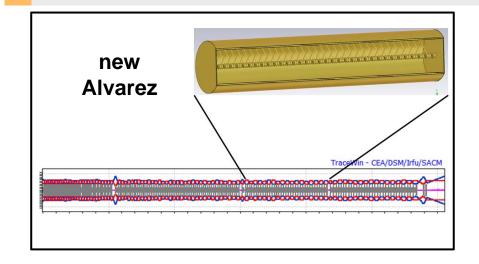
• C, Au, and Xe provided in pulse-to-pulse switching mode

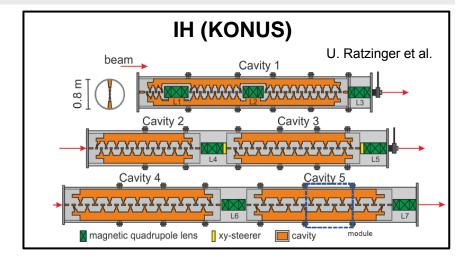
• up to eight experiments conducted in parallel

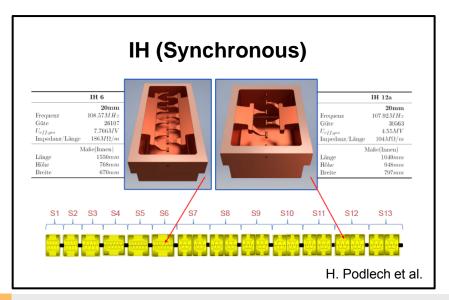
Users and Operation Modes:

(inquired during dedicated workshop in Aug 2016)

User	Rate [Hz]	lons	Pulse length [ms]	Intensity	Energy [MeV/u]	Comments
FAIR	≤ 2.7	p – U*	0.1	very high	11.4	FAIR requirements limit parallel operation for other users with existing post-stripper
super heavy elements	50	0 – U*	5-cw	high	4-6**	experiments require continuous energy variation long beamtimes
nuclear spectroscopy	10-50	C – U*	0.1-5	high	3-7	
materials research	10-50	C - U	1-5	low – high	3-11	frequent changes of energy, intensity, exp. area
biophysics	1-50	p - U	0.1-5	very low – medium	3-11	flexible rep. rate + pulse length needed multiple short beamtimes
plasma physics	1-5	C - Ar	0.1	medium	1-4	multiple short beamtimes


*: require rare isotopes or specific ions


**: precise energy matching (keV/u), low $\Delta p/p$



Aged post-Stripper DTL: Options

On-Site Expertise at GSI

Alvarez

- GSI physicists & engineers simulated, designed, procured, copper-plated, tuned, and commissioned both types of DTLs
- staff operates both types at same machine simultaneously since 16/26 (HSI/HLI) years
- mechanicians maintain both types of DTLs

Post-Stripper DTL Options: Overall Benchmarking

options were benchmarked to each other w.r.t.:

- performance for different beam scenarios
- cost
- operational flexibility
- feasibility w.r.t. construction
- operational risks (surf. fields, instrumentation, ...)
- spare parts
- R&D efforts
- ...
- results summarized in a table of 34 items
- the criteria & rules have been set by GSI directorate and commonly agreed by those placing a proposal

Criteria	New Alvarez	IH (KONUS)	IH (synchronous)	Alvarez (refurbished)
Beam Dynamics				
Six benchmarking cases are defined in Tab. 2. For each case is to be calculated (TraceWin):		TraceWin input files are not forwarded by U. Ratzinger et al, presented results are agreed between A. Rubin and H. Hähnel by using Hähnel's PC during a 1h meeting (23th Sep)	TraceWin input files for the 1 st and 2 nd scenario is forwarded only (27th Sep)	-
Scenario 1				
Transmission [%]	100%	100%	100%	-
Final emittances (95% tot., norm.)	1.058 mm mrad 1.061 mm mrad 104.19 MeV deg	1.62 mm mrad 1.64 mm mrad 107 MeV deg	1.262 mm mrad 1.228 mm mrad 111.67 MeV deg	-
Final bunch length (95% tot.)	± 16 deg	± 16 deg	± 26 deg	-
Beennin a	100%	100%	100%	-

Mechanical Design and Operation ¹				
Overall length to final energy [m] DTL (TL)	57 (4)	23 (38)	35 (26)	
Max. Surface field [kilp.]	1	Not reported	Not reported	1
Max. pole tip magn. field [T]	0.8	1.03	1.1	0.66
Eff. real estate gradient [MV/m]	1.59	3.76	2.77	
Geometry & settings in TraceWin format	Both available	-Geometry from the report -Input TraceWin file not forwarded	-Geometry from the report -Input WinTrace file for the 1 st and 2 nd scenario only	-
# cavities	5x Alvarez 4x Buncher	5x IH DTL	20x IH DTL	5
(TL)	(-)	(3x Buncher)	(1x IH-DTL)	
incl. func. specs	available	available	available	
# rf-amplifiers	5x Alvarez	5x IH-DTL	20x IH DTL	5

L	1		i.	1
Req. spare parts	s. cost estimate	s. cost estimate	s. cost estimate	-
Risks	-not available in time	-not available in time	-not available in time	Undefined
	for FAIR	for FAIR	for FAIR	downtime due to
	commissioning	commissioning	commissioning	failure of
	_	-no operational	-no operational	overaged
		experience with five	experience	irreparable
		long IH-cavities in	- designing expertise	components
		series	is limited to few	-
		-few beam diagnostics	external persons	

Post-Stripper DTL Options: Cost Benchmarking

- cost estimates based on:
 - component lists
 - functional specifications
 - budgetary offers
 - detailed procedure described in a report of 42 pages
- estimates done for all four options by
 - technical departments of GSI
 - same persons

	UNILAC review on 13 th and 14 th October 2016 Cost estimate for possible post-stripper Linac scena	
0	ONTENT	
1	INTRODUCTION	1
2	COST ESTIMATE BASED ON THE COMPONENT LISTS (PRIMARY COSTS).	
3	NUMBER OF ACCELERATOR COMPONENTS	
4	UNIT PRICE	
5	SECONDARY COSTS	
6	BENCHMARKING TEST FOR COST ESTIMATE	
7	NEW ALVAREZ DTL	
	7.1 SCHEME	
8	5X IH DTL (KONUS)	
0	81 SCHEME	
	8.2 COMPONENT LIST	
9	HYBRID IH DTL (SYNCHRONOUS)	
	9.1 SCHEME	
	9.2 COMPONENT LIST	
10		
11	HIT LODA	
	11.1 COST ESTIMATE HE-LINAC IN 2013 (B. SCHLITT ET AL.)	

Post-Stripper DTL Options: Cost Benchmarking

	New Alvarez [k€]		IH (KO	IH (KONUS)		IH (Synchronous)		Refurbished DTL	
			[k€]		[k€		[k€]		
Total	28.424		18.306		40.300		25.875		
DTL	27.616		13.429		36.015		25.175		
Transfer line	108		4.177		3.585		-		
Cavities		15.135		3.835		7.980		15.135	
Rf-systems		10.040		9.400		24.450		10.040	
Magnets		120		1.440		2.055		-	
Power converters		1.290		1.980		3.540		-	
Instrumentation		126		218		306		-	
Vacuum		388		264		460		-	
Alignment		88		80		172		-	
Infrastructure		537		389		637		-	
Tunnel (Ventilation, Cooling, etc)	700		700		700		700		

Post-Stripper DTL Options: Beam Dynamics Benchmark Scenarios

at DTL entrance ²³⁸U²⁸⁺ @ 1.394 MeV/u, Gaussian distribution, TraceWin, hard edge quads

Scenario			Output		
	I [mA]	βγε _{x,rms} [µm]	βγε _{y,rms} [µm]	ε [MeV/u deg]	E _{fin} [MeV/u]
FAIR nominal	16.5	0.175	0.175	0.07	11.4
low current	0	0.175	0.175	0.07	11.4
low energy & current	0	0.175	0.175	0.07	3.3(Alv) / 3.9(IH)
doubled long. input emit.	16.5	0.175	0.175	0.14	11.4
half long. input emit.	16.5	0.175	0.175	0.035	11.4
half hor. / double ver. input emit.	16.5	0.0875	0.350	0.07	11.4

compare transmissions and emittance growth rates

Post-Stripper DTL Options: Beam Dynamics Benchmarking

norm. tot. 95%-emittance growth	rates
---------------------------------	-------

Scenario		New Alvarez				ІН (КС	ONUS)		I	H (Syncl	nronous	5)
	T [%]	Δε _x [%]	Δε _γ [%]	Δε _ι [%]	T [%]	Δε _x [%]	Δε _γ [%]	Δε _l [%]	T [%]	Δε _x [%]	Δε _γ [%]	Δε _l [%]
FAIR nominal	100	7	7	11	100	64	66	14	100	28	25	20
low current	100	0	0	1	100	4	2	20	100	1	0	10
low energy & current	100	0	0	2	100	5	3	89				
double long. inp. emitt.	100	7	10	5	98	71	64	13	no data provided			
half long. inp. emitt.	100	9	8	11	100	45	41	51				
double ver. inp. emitt. half hor. inp. emitt.	100	16	3	4	99	70	19	17				

Post-Stripper DTL Options: Dedicated Review

The outcome of the benchmarking has been presented to a dedicated Review Committee

The charge to the Committee was to assess:

- The beam performance, credibility and reliability of the presented options, to provide the required beam properties required for SIS18 injection in a reliable manner over several decades.
- Costs, effort to put into operation, maintenance effort.
- Service to UNILAC users other than SIS18.

Members:

- Frank Gerigk (CERN, Switzerland, chair)
- Robert Laxdal (TRIUMF, Canada)
- Andrea Pisent (INFN, Italy)
- Deepak Raparia (BNL, USA)
- Maurizio Vretenar (CERN, Switzerland)

Post-Stripper DTL Options: **Dedicated Review**

Appendix A: Agenda & presentations to the committee

Thursday, 13.10.2016

	-,,	
09:45	Welcome, Relevance of meeting for GSI Council	J. Blaurock
09:55	Presentation of Agenda	F. Gerigk/U. Weinrich
10:00	The UNILAC and its operation for the future	P. Gerhard
11:00	Refurbishment potential of existing Alvarez components	S. Mickat
11:30	Visit of UNILAC	P. Gerhard
12:00	Lunch	
13:00	Proposal "Alvarez type DTL"	L. Groening
	Proposal "KONUS IH-type DTL"	U. Ratzinger/H. Hähne
	Proposal "synchronous IH-type DTL"	H. Podlech
16:00	Actual RF design for new post stripper	B. Schlitt/G. Schreiber
16:30	Closed session	F. Gerigk
18:30	End of meeting	
19:30	Dinner	

Friday, 14.10.2016

- Closed session 09:00
- 11:30 Presentation of preliminary results
- 12:00 Lunch
- End of meeting and departure 13:00

F. Gerigk F. Gerigk

Post-Stripper DTL Options:

From final Report of Committee

<u>General:</u> the beam dynamics performance is crucial for the decision on the injector

- 1. Refurbishment of existing post-stripper DTL
 - the committee fully supports the replacement of the present post-stripper linac
 - a refurbishment is not a viable alternative and a replacement is recommended before the start of full FAIR user operation

2. New Alvarez

- the committee agrees that a DTL (with FFDD focusing) offers very good guarantee for a smooth beam dynamics
- the difficulty of rebuilding the Alvarez should not be underestimated ... and may yield a longer than expected fabrication and commissioning period as well as higher than expected cost

3. IH (KONUS)

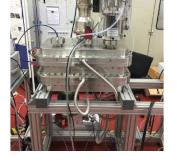
- *it is based on a proven construction design that presents limited risks for fabrication and tuning*
- the committee is not convinced that the proposed KONUS IH in conjunction with the existing preinjector will fulfil FAIR requirements.

4. IH (Synchronous)

• though interesting in concept we do not consider today's technology mature enough for this option

Proton Linac: Overview

Proton Linac: Current Status


• source/LEBT commissioning at CEA (Saclay) in Q2/Q4 2017

ladder RFQ prototype successfully tested

• CCH prototype cavity rf-tuned and tested with high rf-power

• klystrons & power converters: contract with CNRS (Orsay) under preparation

quadruple triplets in production

Summary

- Four options concerning the "aged post-stripper" issue have been benchmarked
- Results were evaluated by dedicated review committee
- Further procedure is defined by the GSI Directorate
- Works on proton linac are ongoing

