

Basic Principles

- Photon time of propagation depends on: ÷

 - (3-dimensional) path $\left\{ t_{
 m top} = s_{
 m 3d}/v_g
 ight\}$
 - projected (2-dimensional) path
 - angle of total internal reflection

$$\cos \varphi = \frac{\text{projected path}}{\text{real 3d path}} = \frac{s_{2d}}{s_{3d}}$$

$$t_{\rm top} = s_{\rm 3d}/v_g = \frac{s_{\rm 2d}}{v_g \cdot \cos \varphi}$$

Basic Principles

• The angle of total internal reflection and the Cherenkov angle

 $\cos\theta_c = \sin\theta_p \cos(\phi_p - \phi) \cos\varphi + \cos\theta_p \sin\varphi$

Basic Principles

All together

Need of path reconstruction to compute the Cherenkov angle

Problems to face

- Limited time-resolution of photon detectors and electronics
- Unknown point of photon emission, spatial pixel-size (PMT dimension)
- Dispersion; affects:

- Phase velocity of light (Cherenkov angle)
- Group velocity of light ("propagation speed of the photon")
- Cherenkov radiation from knock-on electrons (δ -rays)

- Coulomb scattering (minor effect)
- Missing start time -> only relative timing possible !

solution

- Path reconstruction for single photons ??
 - no start-time but
 - -> multiple solutions for the path !!!
 - multiple incident particles

- Better: use relative timing instead
 - compute theoretical hitpattern from hypothesis (pion/kaon/...)
 - compare the result with measured times
 - use unknown start time as fit parameter

Computation of the Hitpattern

- Simple approach :
 - Compute all possible projected paths in 2 dimensions
 - Use the shown formula to transform the results to ToP values
- How to compute all possible projected paths?
 - currently used algorithm uses a graphical approach implemented as iteratable tree

A computed Hitpattern

Hitpattern Kaon p = 4.0 GeV/c

Datasets with and without knock-on electrons

<- clean pattern, 1000 pions at p=1.5 GeV/c

noisy pattern, 1000 pions with -> knock-on electrons. (p=1.5 GeV/c)

Color-coded time difference

Results (1000 particles, δ -rays, 40ps res./25ps bins)

2 incident particles at the same time

Results (1000 particles, δ -rays, 40ps res./25ps bins)

Outlook

- Find a more realistic likelihood function / improve separation power
- Improve minimization -> faster fits
- Use final version for design optimization

Arbeitsgruppe Düren

Appendix A - Results without δ -Rays

Appendix B - Dispersion and Dichroic Mirrors

