

The PANDA Focussing-Lightguide Disc DIRC

Matthias Hoek University of Glasgow

3rd PANDA Cherenkov Workshop, Giessen (Germany), 11. - 13. May 2009

Overview

- Introduction
- Physics Requirements
- Detector Design
- Performance Predictions
- Outlook & Conclusions

Introduction – High Energy Storage Ring

- Cooled Antiprotons
- Momentum (Kinetic Energy) range 1.5 to 15 GeV/c (0.83 to 14.1 GeV)
- **HESR** 10¹⁰ to 10¹¹ particles stored
 - Two Operation Modes
 - High Resolution (HR)
 - Luminosity 2×10³¹ cm⁻²s⁻¹ for 10¹⁰ p
 - RMS momentum spread < 2×10⁻⁵
 - 1.5 to 9 GeV/c
 - High luminosity (HL)
 - Luminosity $2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ for 10^{11} p
 - RMS momentum spread $< 2 \times 10^{-4}$
 - 1.5 to 15 GeV/c

M. Hoek

M. Hoek

M. Hoek

M. Hoek

M. Hoek

Introduction – Physics Program of PANDA

M. Hoek

Introduction – Physics Program of PANDA

M. Hoek

Physics Requirements - Detector Acceptance

M. Hoek

Physics Requirements - Detector Acceptance

M. Hoek

Physics Requirements - Charged Particle Hit Distribution

M. Hoek

Physics Requirements - Particle Multiplicities

- Occupancy
 - Readout
 - Granularity
 - Quantities
 - Pattern recognition

req

- Secondary particles
 - Shower leakage EMC
 - Correlated background

M. Hoek

Physics Requirements - Particle Multiplicities

- Occupancy
 - Readout
 - Granularity
 - Quantities
 - Pattern recognition
- Secondary particles
 - Shower leakage
 EMC
 - Correlated background

Physics Requirements - Particle Multiplicities

- Occupancy
 - Readout
 - Granularity
 - Quantities
 - Pattern recognition
- Secondary particles
 - Shower leakage
 EMC
 - Correlated background

Endcap Cherenkov Detector

• Acceptance

 $-5^{\circ} < \Theta < 22^{\circ}$

- Proximity Imaging
 - Liquid Radiator (e.g. ALICE HMPID)
 - Solid Radiator
 - Dense (e.g CLEO)
 - Aerogel
- DIRC Principle
 - Imaging
 - Time-of-Propagation

Endcap Cherenkov Detector

- Acceptance
 - $-5^{\circ} < \Theta < 22^{\circ}$
- Proximity Imaging
 - Liquid Radiator (e.g. ALICE HMPID)
 - Solid Radiator
 - Dense (e.g CLEO)
 - Aerogel
- DIRC Principle
 - Imaging
 - Time-of-Propagation

3rd PANDA Cherenkov Workshop, Giessen, May 2009

Endcap Cherenkov Detector

Space available for endcap Cherenkov detector

Acceptance

 $-5^{\circ} < \Theta < 22^{\circ}$

- Proximity Imaging
 - Liquid Radiator (e.g. ALICE HMPID)
 - Solid Radiator
 - Dense (e.g CLEO)
 - Aerogel
- DIRC Principle
 - Imaging
 - Time-of-Propagation

3rd PANDA Cherenkov Workshop, Giessen, May 2009

M. Hoek

Barrel DIRC

- Proximity Focussing Type
 - Liquid Radiator (e.g. ALICE HMPID)
 - Solid Radiator
 - Dense (e.g CLEO)
 - Aerogel (e.g. Belle)
 - Limited stand-off distance
 - Large readout plane
- DIRC Type
 - New compact design
 - Basic design pioneered by T. Kamae (Tokyo) NIM A382 (1996)
 - Improved imaging optics
 - High optical quality

3rd PANDA Cherenkov Workshop, Giessen, May 2009

- Proximity Focussing Type
 - Liquid Radiator (e.g. ALICE HMPID)
 - Solid Radiator
 - Dense (e.g CLEO)
 - Aerogel (e.g. Belle)
 - Limited stand-off distance
 - Large readout plane
- DIRC Type
 - New compact design
 - Basic design pioneered by T. Kamae (Tokyo) NIM A382 (1996)
 - Improved imaging optics
 - High optical quality

- Proximity Focussing Type
 - Liquid Radiator (e.g. ALICE HMPID)
 - Solid Radiator
 - Dense (e.g CLEO)
 - Aerogel (e.g. Belle)
 - Limited stand-off distance
 - Large readout plane
- DIRC Type
 - New compact design
 - Basic design pioneered by T. Kamae (Tokyo) NIM A382 (1996)
 - Improved imaging optics
 - High optical quality

- Proximity Focussing Type
 - Liquid Radiator (e.g. ALICE HMPID)
 - Solid Radiator
 - Dense (e.g CLEO)
 - Aerogel (e.g. Belle)
 - Limited stand-off distance
 - Large readout plane
- DIRC Type
 - New compact design
 - Basic design pioneered by T. Kamae (Tokyo) NIM A382 (1996)
 - Improved imaging optics
 - High optical quality

	Disc DIRC	Proximity Imaging		
		Liquid Radiator	Solid Radiator	Aerogel
X ₀	0.17	0.2	0.24	0.14
$N_{0} (1 / cm)$	124	60	57	76
N _{pe}	135	36	68	18
$p_{\min}(GeV/c)$	0.6 (0.2)	0.84	0.56	2.75
p _{max} (GeV/c)	6.5	3.3	2.8	7.5
σ _θ	0.45	4.1	3.9	2.7
Δt	< 500 ps	O(10 ns)	O(10 ns)	O(ns)
Overall length	< 100 mm	~180 mm	~180 mm	~ 250 mm
Photon detection	MCP PMT	CsI GEM	CsI GEM	PMT
spectral range	UV/VIS	VUV	VUV	VIS
pattern	2D + t	2D + t	2D + t	2D + t

see P. Glaessel, NIM A433 (1999)

M. Hoek

Detector Design - Radiator Disc

- Radiation Hardness
 - 100 krad estimated lifetime dose

➔ Synthetic Fused Silica

- High optical quality
- Large refractive index
- No monolithic plate
 - ∅ ~ 2200mm
 - Manufacturer's limit
 - 1200×800mm² (Heraeus Suprasil 1)
 - Optimise tile geometry
 - Investigate glueing options

Detector Design - Radiator Disc

- Radiation Hardness
 - 100 krad estimated lifetime dose
- Synthetic Fused Silica
 - High optical quality
 - Large refractive index
- No monolithic plate
 - ∅ **~ 2200**mm
 - Manufacturer's limit
 - 1200×800mm² (Heraeus Suprasil 1)
 - Optimise tile geometry
 - Investigate glueing options

3rd PANDA Cherenkov Workshop, Giessen, May 2009

Detector Design - Optical System (Imaging)

Courtesy of T. Keri

- Focussing lightguides placed on rim of the radiator
- Non-spherical surface for best image quality
 - Optimise parameters using ray-tracing methods
 - Take production tolerances into account
- Match image size to photon detector size
- Tilt focal plane according to magnetic field
- Optimise number of units

Detector Design - Optical System (Imaging)

- Focussing lightguides placed on rim of the radiator
- Non-spherical surface for best image quality
 - Optimise parameters using ray-tracing methods
 - Take production tolerances into account

- Match image size to photon detector size
- Tilt focal plane according to magnetic field
- Optimise number of units

Detector Design - Optical System (Dispersion Correction)

- Focussing optics takes care of radiator thickness
- Compare contributions to Cherenkov
 angle reconstruction

- Chromatic dispersion
 - $\sigma_{_{chr}} \sim 5 mrad$
- Multiple scattering σ_{msc} ~ 2mrad
- Mitigate dispersion effects
 - Time-of-Propagation unfeasible (σ < 25ps)
 - Combine Fused Silica with LiF

3rd PANDA Cherenkov Workshop, Giessen, May 2009

Detector Design - Optical System (Dispersion Correction)

- Focussing optics takes care of radiator thickness
- Compare contributions to Cherenkov
 angle reconstruction

- Chromatic dispersion
 - $\sigma_{_{chr}} \sim 5 mrad$
- Multiple scattering σ_{msc} ~ 2mrad
- Mitigate dispersion effects
 - Time-of-Propagation unfeasible (σ < 25ps)
 - Combine Fused Silica with LiF

3rd PANDA Cherenkov Workshop, Giessen, May 2009

Detector Design - Optical System (Dispersion Correction)

- Focussing optics takes care of radiator thickness
- Compare contributions to Cherenkov
 angle reconstruction

Detector Design - Photon Detection

- Position sensitive
- Response
 - Single photon sensitivity (Gain ~ 5×10^5)
 - Fast signal response (less than 300ps)
 - High-rate capability (~1MHz per channel)
- Magnetic field operation
 - Inside solenoidal target magnet
 - Field strength up to 1.5T
- ➔ Multi-anode MCPs
- Custom electronics required
 - Hit pattern + TDC (digital)
 - ADC for performance monitoring & comissioning (analog)

Detector Design - Photon Detection

MCPs – A. Lehmann, Mon 17:40 FEE – T. Keri, Wed 12:10

- Position sensitive
- Response
 - Single photon sensitivity (Gain ~ 5×10^5)
 - Fast signal response (less than 300ps)
 - High-rate capability (~1MHz per channel)
- Magnetic field operation
 - Inside solenoidal target magnet
 - Field strength up to 1.5T
- ➔ Multi-anode MCPs
- Custom electronics required
 - Hit pattern + TDC (digital)
 - ADC for performance monitoring & comissioning (analog)

3rd PANDA Cherenkov Workshop, Giessen, May 2009

Detector Design – Mechanical Integration

- Space requirements
 - < 100mm in central area</p>
 - Housing
 - Detector weight ~ 1000kg
 - Cooling
 - Environmental control (N₂ atmosphere)
 - Support
 - Attach to rim
 - Allow flexing
 - Share EMC mount points

Performance Estimation - Cherenkov Photon Characteristics

M. Hoek

Performance Estimation - Cherenkov Photon Characteristics

Average Number of Reflections

M. Hoek

Performance Estimation - Cherenkov Photon Characteristics

- Moderate photon path lengths (< 1.5m)
- Number of reflections is small (< 60)
 - Less tight conditions for surface
 - Surface roughness better than 1nm RMS
- BaBar DIRC
 - 200-400 reflections
 - Surface roughness 0.5nm RMS

Performance Estimation - Cherenkov Photon Light Yield

- Function of
 - Radiator thickness
 - Particle velocity
 - Particle polar angle Θ
 - Trapping fraction
- No of detected photons
 - QE of PMT
 - Absorption losses
 - Bulk absorption
 - Reflection loss

Performance Estimation - Cherenkov Cone Patterns

- Expected hit pattern
 - Hyperbolic shape
 - Apex most important
- Required
 - 2D hit pattern
- Timing information
 - Additional coordinate
 - Clean up pattern space

Performance Estimation - Cherenkov Cone Patterns

- Expected hit pattern
 - Hyperbolic shape
 - Apex most important
- Required
 - 2D hit pattern
- Timing information
 - Additional coordinate
 - Clean up pattern space

M. Hoek

Performance Estimation - Cherenkov Cone Patterns

M. Hoek

Performance Estimation - PID Performance (π **-K Separation)**

Performance Estimation - PID Performance (π **-K Separation)**

- Performance depends on
 - Number of Focussing Lightguides (φ-resolution)
 - Strip pitch (θ -resolution)
- Current Base Design
 - 128 Lightguides
 - 1.5mm strip pitch
 - 4096 readout channel

³ → > 3σ π-K separation at 4-5GeV/c

Outlook - Prototype Design

- Test core features of Focussing Design
 - Dispersion correction
 - Glue joints
 - Imaging optics
 - Photon readout
 - Full characterisation of components
 - AFM/Interferometer on surfaces
 - Shape of radiator bars (CMM)
 - Transmission
 - Test Experiments
 - Mixed hadron beams (GSI)
 - Electrons (Glasgow)

Focussing Optics

Radiator with Dispersion Correction

Position-sensitive MCP

M. Hoek

Conclusions

Design

- Using DIRC principle with new geometry
- Dispersion corrction with optical elements
- Spatial hit information plus timing (2D + t)
- R&D Efforts
 - Radiator materials
 - Photon readout in high magnetic fields
 - Fast FEE
- Constructing prototype
 - Confirm design performance by 2011