Workshop on fast Cherenkov detectors – Photon detection, DIRC design and DAQ, Gießen 2009

A DIRC detector for WASA-at-COSY^{*}

where we are – where we go

Wolfgang Eyrich

Wolfgang.eyrich@physik.uni-erlangen.de

Physikalisches Institut der Friedrich-Alexander Universität Erlangen / Nürnberg

* supported by German BMBF and Forschungszentrum Jülich

A DIRC detector for WASA-at-COSY

where we are – where we go

- Introduction and Motivation
- DIRC Concept
- MonteCarlo Studies
- Studies on Components
 - Radiators
 - Optics
 - Sensors and Electronics
- Prototype Measurements and Results
- Road Map to an Operating Detector

A DIRC detector for WASA-at-COSY

where we are – where we go

- Introduction and Motivation
- DIRC Concept
- MonteCarlo Studies
- Studies on Components
 - Radiators
 - Optics
 - Sensors and Electronics
- Prototype Measurements and Results
- Road Map to an Operating Detector

R.Siudak, K.Ulbrich (Bonn), A.Pricking (Tübingen)

Ch. Adolph, A. Schmidt, A. Teufel, Ch. Vogel, C. Pizzolotto (Erlangen)

A DIRC detector for WASA-at-COSY

where we are – where we go

- Introduction and Motivation
- DIRC Concept
- MonteCarlo Studies
- Studies on Components
 - Radiators
 - Optics
 - Sensors and Electronics
- Prototype Measurements and Results
- Road Map to an Operating Detector

Bonn – Erlangen – Gießen – Jülich – Tübingen WASA – PANDA

detection of photons, electrons, charged pions

detection of scattered projectiles and charged recoil particles

Actually: PID by FRH energy loss information Strong improvement expected by DIRC: Limited space \rightarrow focussing lightguide

huge background $!!! \rightarrow$

FVH

FRA

Particle ID is very important

MDC – Main drift chamber PSB – Plastic scintillator barrel SCS – Super conducting solenoid SEC – Scintillator em calorimeter FWC – Forward window counter **FPC – Forward proportional chamber** FTH – Forward trigger hodoscope FRH – Forward range hodoscope FRH – Forward range absorber FVH – Forward veto hodoscope

WASA - MonteCarlo Simulation wo / w additional PID

DIRC for WASA - Kinematic Conditions

DIRC for WASA: Possible solution – focussing technique

Component Studies - Radiators

- PlexiGlas® (PMMA) → Röhm GS233 n=1.491 / 700x40x40 mm³ wavelength range : 400nm – 750nm transparent
- Surface quality
 - casted / diamond cut / diamond cut + polished (PMMA)
 - Transmission
 - Absorption
 - **Reflectance** (transmission per reflection)
 - Image quality \rightarrow angle conservation

Fused Silica → Schott Lithosil Q₀ n=1.47 / 800x35x17 mm³
 (Panda PID Group sample – C.Schwarz / GSI)
 wavelength range : 200nm – 750nm transparent

Radiators: Reflectance and Image Quality

casted surface: effective reflectance: 99.0%
 compact spot

diode size 10x10mm²

diamond cut + polished surface: 98.4%

diffuse spot

• diamond cut surface: from 98% down to 91%

grid like spot

• (fused silica: 99.5%)

Focussing elements

Wolfgang Eyrich - Universität Erlangen-Nürnberg

Focussing Elements

Parabolic type – Mylar coated

Polynomic type

Photon Sensors

Туре	Hamamatsu MAPMT R7600-03-M16	Hamamatsu MAPMT H8500C	Hamamatsu MAPMT H9500
Dimensions	45x30x30 mm ³	52x52x28 mm ³	52x52x33.3 mm ³
Weight	55 g	117 g	177 g
No. channel	16 (4x4)	64 (8x8)	256 (16x16)
Active area	18.1 x 18.1 mm² (36%)	49 x 49 mm² (89%)	49 x 49 mm² (89%)
Pixel size	4 x 4 mm²	5.8 x 5.8 mm²	3.04 x 3.04 /3.22 mm²
Peak λ	400 nm	400 nm	400 nm
Multiplication	metalchannel dynode 12step	metalchannel dynode 12step	metalchannel dynode 12step
		manum	

Photon Sensor H6568

QDC single photon response

Photon Sensor H6568

Photon Sensor H8500C

Photon Sensor H8500C

COSY-TOF external experimental area Protons at 1155 MeV/c and 3050 MeV/c momentum \$\Provisition sensitive beam hodoscope as trigger

Various measurements done:

Cherenkov photon output of radiator bars themselve
photon left – right asymmetry as function of x and \$\phi\$ (8 x H6568)
two fully equipped DIRC submodules

★Tübingen radiator (40x40x600mm3) + parabolic optic + H8500C**★Jülich radiator** (40x40x600mm3) + polynomic optic + H8500C

Prototype Measurements w/o Focussing

Proton momentum 3050 MeV / c

Parabolic type

- Setup scheme proton H8500C (8x8)
- Some MC
 - Geant3 software package R.Siudak (Jülich/Bonn)
 - Geant4 software package K.Ulbrich (Bonn)
 - Photon tracking package A.Pricking (Tübingen)

Parabolic type – number of photons and image

pixel resolution ~ 25 mrad

Parabolic type – **number of photons and image**

Polynomic type – **number of photons and image**

Polynomic type – single event pattern

Wolfgang Eyrich - Universität Erlangen-Nürnberg

Road Map \rightarrow Operating Detector

- Extended Prototypes

- Photon Sensors: Hamamatsu Super/Ultra Cathodes
- Readout Electronics Software MC
- Detector for WASA \rightarrow Experience for PANDA

Acknowledgments

- H. Clement, A. Pricking, G. Brodbeck Tübingen
- **K. Föhl** Giessen (Edinburgh)
- F. Hinterberger, K. Ulbrich, R. Siudak HISKP Bonn
- H. Hadamek et. al. IKP FZ Jülich
- N. Paul, J. Uehlemann, Th. Sefzick IKP FZ Jülich
- P. Wüstner, E. Roderburg, G. Sterzenbach,
 P. Wintz, F. Goldenbaum IKP FZ Jülich
- M. Wolke et. al. WASA collaboration
- **COSY crew** FZ Jülich
- Th. Spona, K. Streeb, K. Kärcher Workshop PI Erlangen
- A. Teufel, Ch. Adolph A. Schmidt, Ch. Vogel,, C. Pizzolotto Erlangen

Supported by BMBF, FZ-Jülich

Spot without reflections σ=0.387 mm

Spot after 7 reflections casted surface s=0.295 mm

Spot after 7 reflections cut and polished surface double peak structure

∆x=1.28 mm

Photon Sensors H6568

Crosstalk and effective Pixelsize → scan with 0.5 mm ste

Photon Sensors – H8500C

Crosstalk and effective Pixelsize → scan with 0.5 mm ste

