The PANDA Barrel DIRC

Carsten Schwarz, 🖬 🖬 🏛

- Introduction
 - HESR
 - PID
 - The PANDA DIRCs
 - DIRC principle
- Photon detector
 - Mirrors
 - Lenses

- Photon detection
 MCP-PMT
- Radiator quality
- Read out chain

Detector requirements:

- nearly 4π solid angle for PWA
- high rate capability: 2x10⁷ s⁻¹ interactions
- efficient event selection
- momentum resolution ~1%
- vertex info for D, K_{S}^{0} , Λ (c τ = 317 µm for D[±])
- good PID (γ, e, μ, π, K, p)
- photon detection 1 MeV 10 GeV

PANDA PID Requirements:

- Particle identification essential for PANDA
- Momentum range 200 MeV/c 10 GeV/c
- Different process for PID needed

PID Processes:

- Cherenkov radiation: above 1 GeV Radiators: quartz, aerogel, C4F10
- Energy loss: below 1 GeV
 Best accuracy with TPC
- Time of flight

Problem: no start detector

- Electromagnetic showers: EMC for e and γ
- Muon detection system

The PANDA DIRCs

DIRC principle to minimize space

May 11-13, 2009

BABAR DETECTOR FOR THE PEP-II B FACTORY

DIRC principle

Detection of Internally Reflected Cherenkov light

May 11-13, 2009

Ring Imaging

BaBar pinhole focus

for smaller photon detector focussing needed

- mirror
- lens

Performance of the PANDA barrel DIRC

reduced BaBar version (7000 PMT, pinhole focus)

Geant4 simulation with own photon propagation reconstruction was done with Root-fit of image

status of Conceptional Design Report 2001 Technical Progress Report 2005

recent developments: timing information, lens focusing --> focusing 3-D DIRC

May 11-13, 2009 Workshop on fast Cherenkov Detectors, Gießen

PANDA-DIRC: 3D-DIRC

Time of Propagation measurement better 0.5ns allows to correct dispersion for high and low momenta $\rightarrow x,y,t \rightarrow 3D$ -DIRC

May 11-13, 2009

Photon detector, Mirrors

Towards a smaller photon detector: pinhole focus --> optical element: mirror, lenses

mirror: problem with "split rings"

Visualization by PandaRoot simulation framework

using one or two single mirror (toroidal section) needs huge radius

Lenses

DRCPROP routines

Lens

Lens doublett

flat focal plane computed with ZEMAX optical software

DRCPROP routines (no Fesnel reflections)

May 11-13, 2009

The photon detection device

needs to work in magnetic field of ~ 1 Tesla --> channel plate PMT, Si-PMT

DIRC-Fokalfläche, magnetischer Fluss (0.9-1 Tesla) läuft fast senkrecht durch

May 11-13, 2009

The photon detection device

Barrel DIRC: 0.8 C/(cm²*year)

for 10-15 years we need 8-12 C/cm²

May 11-13, 2009

Lifetime – Quantum Efficiency

- Q.E. of Russian MCP-PMTs drops very fast
 - better with Al-layer but lifetime still much too short for PANDA
- Q.E. of HPK MCP-PMT wo Al-layer drops fast as well
- Q.E. of HPK MCP-PMT with Al-layer remains almost constant

only 10% Q.E. drop of HPK MCP with Al-layer after ~3.5 C/cm²

Albert Lehmann

PID Subgroup Meeting --- GSI -- March 3, 2009

The photon detection device

Further developments:

diamond dynode PMTs working in 1 Tesla with CsTe photo cathode (UV)

--> Uni Erlangen group, Photek talk Monday

Radiator quality

20Å T=0.999¹⁰⁰=0.9 T=0.99¹⁰⁰=0.37 polishing of synthetic fused silica no problem for industry

question of machine time and money

costs: 25% bulk, 75% polishing --> looking into extruded bars & surface melted bars

-->talk of Roland Hohler, Wednesday

Radiator quality

LithotecQ0 bar with σ =20 Å specified by Schott-Lithotec

 $R = 0.99918 \pm 0.00031 \qquad \sigma = 21.6 \pm 4.1 \text{ Å}$

Plexiglas GS233 bar

For 100 reflections: 45% transport efficiency (shiny side reflections only)

May 11-13, 2009

Test beam September 2008 with 2.3 GeV protons

2 Burle MCPPMTs as photon detector (2x64 channels)

FEE boards are on top of photon detector boxes

May 11-13, 2009

20 MHz interaction rate barrel multiplicity 2 20 photons per ring ~ 5000 channels (inside region)

Rate: 160kHz (inside region)

422

TRB + discriminator board (HADES)

NINO discriminators --> time over threshold

The TRB gives a power supply and a slow control

128 Q2W channels

Marek Palka IEEE Dresden

Albert Lehmann, Coll. Meeting March 2009, GSI

Caveat: NINO chip: 16 channels, 1 threshold, Burle 85011 have gain variations of factor 2 Adjustable preamplifiers, patch panels?

May 11-13, 2009

- Read out for test experiments need existing electronics
 - HADES read out
- Possible future solution
 - GET4 TDC development of GSI

--> tomorrows FEE and DAQ session

Summary

- Barrel DIRC uses improved DIRC principle
 - using timing information
 - smaller photon detection box (focusing)
- Progress on
 - photon detection device characterization
 - radiator bar quality
 - read out chain
 - software development