Studies of APD (SiPM) properties

J. Marton Stefan Meyer Institute for Subatomic Physics (SMI),Vienna

- SMI Research Program interest in SiPMs
- SiPM test equipment at SMI
- SiPM studies performed
- Example for application: Beam profile monitor
- Next steps

Various SiPMs were tested at SMI, e.g.:

Hamamatsu, 1mm², 3 mm² Photonique, 1 mm² Dubna, 1 mm², 3 mm² Zecotek, 1 mm², 3 mm²

Different characteristics in

Number of cells (linearity) Fill factor (PDE) Q.E. (PDE) Noise, dark current

J. Marton Cherenkov Workshop, Gießen, May 11-13, 2009

SMI Research Program

- Kaon-nucleon interaction: SIDDHARTA at LNF, E17 at J-PARC, FOPI at GSI, AMADEUS at LNF
- Matter-Antimatter (A)symmetry at AD-CERN
- Research with antiprotons at FAIR (PANDA, FLAIR, AIC)
- Tests of fundamental principles (VIP at LNGS)

Motivations

- Photon detectors for our physics program :
 - Study of the performance of SiPMs for scintillating fiber detectors: FOPI (beam profile monitor), AMADEUS, (scint. fibers as kaon trigger detectors)
 - VIP experiment: possible application in cosmic ray active shielding with scintillation detectors
 - Cherenkov detectors for PID:
 - PANDA, arrays of SiPM for the readout of DIRC
 - Joint activity FP7 HadronPhysics2

Our interest in SiPM Applications

- Low-level light detection and single photon readout with SiPMs → Cherenkov detectors
- Medium-level light detection in SiPM-coupled scintillating fiber detectors → position sensitive charged particle detection
- SiPMs for fast calorimetry and large dynamic range
- Ultra-fast timing for TOF-applications

SiPMs for Cherenkov detectors

High photon detection efficiency
PDE = F-Q-A

F Fill factor Q..... Quantum efficiency A.....probability for avalanche

- High sensitivity for blue light (Q)
- Fast timing performance
- Low cost
- Small size sensors \rightarrow arrangement in arrays
- Radiation hardness ?
- Insensitive to magnetic fields (given for all SiPMs)

SiPM Test Systems at SMI

Black box with optical board ("bread board") and picosecond-laser

Laser light can be attenuated and fed into optical fiber

Setup at SMI for cooling tests

Vacuum chamber for cooling tests, Peltier cooling, chiller with temperature control. Light tight, prevents condensation of water vapor

SiPM holder For 2 devices cooled by Peltier

SiPM mounting in the vacuum chamber: Coupling into laser beam via optical fiber. Feedthroughs for supply voltages and signal temperature control

Tests at SMI

- Dark current characteristics as function of V_{bias},T
- Timing studies with ps laser
- Measurements at different temperatures, Peltier cooling down to about -30°C
- Pulse-height and time spectra (CAMAC and VME based DAQ system), gain studies

Setup dark current measurements

MPPC dark current

-T= 10.0 ± 0.1 C

0.2 Dark Current (uA) 1.5 0.1

0.5

0.0

67.0

67.5

68.0

68.5

69.0

69.5

Bias Voltage (V)

70.0

70.5

71.0

71.5

72.0

Hamamatsu 1 mm

Hamamatsu 3 mm

MAPD dark current

Zecotek 1 mm

Zecotek 3 mm

Recorded PH Spectra (VME DAQ)

MPPC and AMPD light detection

Pulse-Height spectra of 3mm SiPMs (Hamamatsu vs. Zecotek) with laser light

Photon distribution

Electronics for timing measurements

Hamamatsu timing result

From Hamamatsu MPPC booklet

Tests of timing resolution with TDC

Picosecond-Laser pulsed light source

TDC 25ps/ch

LE discriminator, off-line time-walk correction

Different light intensity, threshold 0.5p.e.

 \rightarrow <u>Better timing performance with more light</u>

Mean: 10 photon

Mean: ~15 photon

 σ =77ps =180 ps FWHM

 σ =102 ps = 240 ps FWHM

Timing Timing ht ht 99633 Entries Entries 99775 \$3500 0 3000 Mean -1.361 Mean -6.253 Counts RMS 128.3 RMS 81.82 thres = 0.5pe thres = 0.5pe FWHM = 180ps FWHM = 240ps 4000 2500 3000 2000 1500 2000 1000 1000 500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 -2000 -1500 -1000 -500 0 500 1000 1500 2000 timejitter / ps timejitter / ps

Hamamatsu 100U AMPD (HS 100)

Cherenkov Workshop, Gießen, May 11-13, 2009 I. Marton

MPPC and MAPD timing

Timing spectra, peaks are separated by equidistant delays of 4ns preliminary data

An Example for the Application of SiPMs : Beam-Profile Monitor for FOPI

K. Suzuki, P. Bühler, S. Fossati, J. Marton, M. Schafhauser and J. Zmeskal, "Development of SciFi/CheFi detectors with SiPM readout", Proc. New Developments In Photodetection 2008", Aix-les-Bains, France, <u>Nuclear Instruments and Methods in</u> <u>Physic Research A</u>, in print.

Monitor of proton beam

➤Good position resolution ~Imm

I grid consisting of 2 layers of scintillating fibers Imm

➢ Resistant to magnetic field of FOPI (0.6 T)

High rate capability (>1 MHz)

Beam Profile Monitor - Design

Beam Profile Monitor

Installation at GSI-FOPI

Beam profile measurement

Next steps

- Characterization of SiPMs to be continued
- SiPM array development (joint activity FP7)
- Cherenkov detectors with fast timing
 - Prototyping
 - Tests at BTF at LNF
- Scintillating fiber detector for AMADEUS
 - Prototyping
 - Rate capability tests
- Development of an anticoincidence shield for VIP with scintillators read out with SiPMs

Team @ SMI

Gamal Ahmed Paul Bühler, Matthias Schafhauser, Ken Suzuki, Johann Marton technicians (3) and students

Thank you for your attention

Dark count rate with Peltier cooling

Gain kept constant by adjusting the bias voltage

