MCP Detectors for Picosecond Timing

Wolfgang Plaß

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt II. Physikalisches Institut, Justus-Liebig-Universität Gießen

Overview

- Motivation Mass Measurement of Exotic Nuclei
- MCP Detectors for TOF-MS
- MCP Detectors for Storage Ring MS
 - Timing Detection Efficiency Rate Capability
- Conclusions

GEMEINSCHAFT

Motivation: Mass Measurements of Exotic Nuclei

The mass of a nucleus reflects its binding energy and hence its stability and structure

Nuclear Mass $M(N, Z) = Z \cdot m_p + N \cdot m_n - B(N, Z)/c^2$

Z = Proton number, N = Neutron number, A = N + Z = Mass number, B = Binding Energy

Motivation: Mass Measurements of Exotic Nuclei

Nuclear Structure

- binding, separation energies
- pairing
- shell closures
- deformation
- location of driplines
- halo nuclei
- nuclear / mass models

Nuclear Astrophysics

- nucleosynthesis pathways
- elemental abundances
- explanation of astrophysical observations (e.g. x-ray bursts)

Required Resolving Power: $m/\Delta m = 10^5$ (Isobars)Required Accuracy: $\delta m/m \le 10^{-6}$ viz. 100 keV

Production of Exotic Nuclei

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

Multiple-Reflection Time-of-Flight Mass Spectrometer

Advantages

- High resolving power (> 10⁵)
- High ion capacity (> 10^6 / s)
- Short measurement time (~ ms)
 - \rightarrow access to very exotic nuclei

Applications

- Direct mass measurements
- Isobar separation (e.g. ¹⁰⁰Sn)

MCP Detector for TOF-MS

2 MCPs, Chevron arrangement Active diameter: 18 mm Channel diameter: 10 μ m Length / diameter: 40:1 Resistance: ~ 300 M Ω

T. Dickel, N. Kuzminchuk

Isochronous SEM for TOF-MS

SEM with isochronous inter-dynode electrode transfer: Crossed electric and magnetic fields

G.W. Goodrich, W.C. Wiley, Rev. Sci. Instrum. 32 (1961) 846

FIG. 2. Electron trajectories in resistance strip magnetic multiplier.

Isochronus SEM with larger input aperture: Inhomogenous magnetic field

Performance Characteristics (Manufacturer)Peak Width (FWHM):< 0.5 ns</td>Detection Efficiency:~ 80%Max. Operating Pressure:10⁻⁴ mbarInput Aperture:15 mm x 33 mm

D. Stresau et al., Proc. 54th ASMS Conference, 2006

Isochronous Mass Spectrometry (IMS) in the ESR

→ dependence of frequency on velocity almost disappears

TOF Detector for IMS in the ESR

Carbon Foil

J. Trötscher et al., NIMB 70 (1992) 455

IMS TOF Detector: MCP Detectors and Data Acquisition

2 MCPs, Chevron arrangement Active diameter: 40 mm Channel diameter: 10 μ m Length / diameter: 60:1 Resistance: ~ 30 M Ω

N. Kuzminchuk

IMS TOF Detector: Timing Precision

- Event timing analysis (in software):
- 1. Data smooting
- 2. Determination of event time
- Extrapolation to zero
- Constant Fraction

Determination of the timing precision by coincidence measurement (forward and backward channels)

IMS Data Analysis

Identification of Individual Ions

Determination of Revolution Times

R. Knöbel, B. Sun

Performance of IMS

B. Sun, R. Knöbel

IMS TOF Detector: Detection Efficiency

Optimization of electron transport by simulations

Empirical setting (J. Trötscher , Dissertation, JLU Gießen 1993) Setting optimized by simulations (B.Fabian, PhD thesis, JLU Gießen 2008)

Verification by experiment

IMS TOF Detector: Rate Capability

Revolution time detector in the ESR needs high rate capability

Revolution frequency: ~ 2 MHz \rightarrow 50 particles generate 10⁸ hits / s

B. Fabian, Dissertation, Justus-Liebig-Universität Gießen, 2008

IMS TOF Detector: Rate Capability

G.F. Fraser, Nucl. Instrum. Methods A 306 (1991) 247

B. Fabian, Dissertation, Justus-Liebig-Universität Gießen, 2008

IMS TOF Detector: Optimization of the Rate Capability

HV Variation of MCP gap distance MCP 1 and gap voltage $\mathsf{U}_{\mathsf{Gap}}$ Gap Distance MCP 2 Anode 10^{7} Rate at Onset of Saturation / Hz No Gap 1 mm Gap 2 mm Gap 3 mm Gap 10⁸ 10⁶ Gain 10⁵ 1 mm Gap 2 mm Gap 3 mm Gap 10^{7} 10^{4} 100 200 300 400 500 0 100 200 300 400 500 0 Gap Voltage / V Gap Voltage / V Increasing number of secondary channels Compromise between gain Increasing electron impact energy

N. Kuzminchuk, B. Fabian

and rate capability required

Conclusions and Outlook

Direct mass measurements: important tool for

- structure of exotic nuclei
- nuclear astrophysics

Novel mass measurement methods

- Isochronous mass spectrometery (IMS)
- Multiple-reflection time-of-flight mass spectrometry (MR-TOF-MS)

MCP detectors for IMS and MR-TOF-MS

• Peak width: 0.5 ...1 ns

Detector and data acquisition for IMS

- Data acquisition by fast-sampling digital oscilloscopes
- Event timing analysis in software: CFD and extrapolation to zero
- Timing precision: 40 ps, < 1 ps for multiturn measurement
- Optimization of transmission efficiency by simulation and experiments
- Investigation of rate capability (>10⁶ Hz)

Next steps

- MCPs with 5 μ m channel diameter (timing, rate capability)
- Detector design for improved timing
- Position-sensitive detection (delay line detector)

Acknowledgements

Timo Dickel¹, Benjamin Fabian^{1,2}, Natalia Kuzminchuk^{1,2} Hans Geissel^{1,2}, Ronja Knöbel^{1,2}, Christoph Scheidenberger^{1,2}, Baohua Sun^{1,3}, and the FRS-ESR Collaboration

¹ Justus-Liebig-Universität Gießen
² Gesellschaft für Schwerionenforschung Darmstadt
³ Peking University, Beijing, China

Funding: HGF und GSI (VH-NG 33), GSI F+E (GIMET2), BMBF (06GI185I)

Methods for Mass Spectrometry of Exotic Nuclei

