Studies of MCP Properties

A. Britting, W. Eyrich, A. Lehmann, F. Uhlig Universität Erlangen-Nürnberg

- particle identification with PANDA
- experiences with various MCP-PMTs
 - behaviour in magnetic fields
 - time resolution
 - surface scans
 - rate stability
 - lifetime

Albert Lehmann

PANDA Detector

anti<u>P</u>roton-<u>AN</u>nihilation at <u>DA</u>rmstadt

<u>\</u>2

m

- Strong magnetic field (2T)
- High resolution tracking
- Good π/K separation \Rightarrow **DIRC**

Albert Lehmann

Cherenkov-Workshop --- Gießen --- May 11-13, 2009

ā a n d a

Technical Challenges to Photon Sensors

- Single photon detection inside high B-field
 - high gain (> $5*10^5$) even in the 2 Tesla magnetic field
- Time resolution to separate π/K with TOP
 - very good time resolution of < 50 ps for single photons</p>
- Photon rates in the MHz regime
 - high rate stability (rates of several MHz/cm²)
 - short pulses (< 10 ns) to avoid pile-up
 - long lifetime
- Few photons per track
 - high detection efficiency $\eta = QE * CE * GE$
 - [QE = quantum efficiency; CE = collection efficiency; GE = geometrical efficiency]
 - low dark count rate

Albert Lehmann

Sensor Candidates

good geometrical resolution over a large surface needed → multi-pixel sensors

- multi-anode photomultipliers (MaPMTs)
 - (more or less) ruled out by magnetic field
- hybrid photo detectors (HPDs)

too bulky

- Geiger-mode avalanche photo diodes (SiPMs)
 - noise problematic
- micro-channel plate photomultipliers (MCP-PMTs)
 - problems with lifetime and rate stability

Albert Lehmann

Investigated MCP-PMTs

pore size (µm) number of pixels active area (mm²) total area (mm²) geometrical efficiency peak Q.E. protection layer

Burle 85011	Burle Prototyp	BINP
25	10	6
8x8	8x8	1
51x51	51x51	9² π
71x71	69.5x69.5	15.5² π
0.44	0.47	0.36
@ 400 nm	@ 400 nm	22% @ 480 nm
none	none	5-10 nm Al ₂ O ₃

Hamamatsu SL10 10 4x1 22x22 27.5x27.5 0.61 20% @ 300 nm none

Albert Lehmann

Hamamatsu MCP-PMT (R10754-00-L4)

- first impressions of R10754-00-L4 (= SL10)
 - bulky voltage divider
 - very fast signals (~750 ps FWHM)
 - problems with some standard discriminators
- appears to be rather fragile !!

linear array of 4 pixels with 20x5 mm²

Albert Lehmann

Tools for MCP-PMT Studies

- Light source
 - PiLas light pulser (pulse width 14 ps (σ); $\lambda = 372$ nm)
 - light transport through glass fibers, micro lenses and gray filters
- Fast oscilloscope
 - LeCroy WavePro7300 (3 GHz; 20 Gs/s)
 - very useful for precise time resolution measurements
- CAMAC and VME DAQ
- Dipole magnet
 - homogeneous field up to 2.05 T (6 cm pole shoe gap)
- XY-Scanner
- Setup for Quantum Efficiency measurements
 - halogen lamp ($\lambda = 300-800$ nm) and monochromator ($\Delta \lambda = 1$ nm)
 - Si photo diode as reference sensor (Hamamatsu S6337-01)

Albert Lehmann

Gain in Magnetic Field

pore size ≤10 µm needed for single photon detection in 2 T field

Albert Lehmann

Time Resolution

Amplifier Ortec VT120A (x200; 350 Mhz) --- Discriminator LeCroy 821

single photon resolutions corrected for electronics and laser width

45 ps

37 ps

20 ps

- Burle 85011 (25 μm)
- Burle Prototype (10 μm)
- BINP #73 (6 μm)

Albert Lehmann

Gain and Time Resolution of SL10

Albert Lehmann

Gain Dependence on B-Field Direction

Albert Lehmann

Surface Scans of Burle MCPs (Gain)

- **Burle 25 µm:** almost x2 gain variations (1.5 to 2.8*10⁶) in channels
- **Burle 10 µm:** very strong gain fluctuations (0.5 to 3.5*10⁶ !!)

Albert Lehmann

Surface Scans of Burle MCPs (Crosstalk)

- **Burle 25 µm**: rather homogeneous response, but significant crosstalk
- **Burle 10 µm**: less homogeneous response and even more crosstalk

Albert Lehmann

Surface Scans of SL10 (Count Rates)

- very homogeneous response of the individual channels
- significant **crosstalk** between the channels

Albert Lehmann

Crosstalk of SL10

- two components in timewalk distributions
 - crosstalk inside detector
 - electronic crosstalk
- separation of components possible
- electronic crosstalk probably from voltage divider

Albert Lehmann

Rate Stability

- usually stable operation to about 1 MHz/cm² photons
- Hamamatsu SL10 stable up to 5 MHz/cm² (at gain 10⁶)

Albert Lehmann

Overview of Sensor Performances

	DIRC required	MaPMT	MCP-PMT	SiPM
Gain at 0 T [* 10 ⁶]	> 0.5	1 to 10	1 to 10	0.5 to 1
Gain at 2 T [* 10 ⁶]	> 0.5	0	> 0.5	> 0.5
Time resolution [ps]	< 50	150	< 50	100
Rate stability [MHz/cm ²]	5 – 10	10	5	
Darkcount rate [kHz/cm ²]	< 10	~ 0.01	2	10000
Crosstalk behaviour	low	okay	moderate	
Lifetime [C/cm ²]	50 – 100		> 3.5	

 currently there is no sensor fulfilling all requirements of the PANDA DIRCs

Albert Lehmann

Lifetime (1)

• fast gain drop first and almost constant later

• Q.E. of HPK w Al-protection almost stable up to 3.5 C/cm²

Albert Lehmann

Lifetime (2)

- large Q.E. drop at longer wavelengths
- less aging problems in UV region (UV sensitive photo cathodes?)

Albert Lehmann

Conclusions

• expected rates and anode charges of the PANDA DIRCs:

	total rate	anode rate (after Q.E.)	integrated anode charge
	[MHz/cm ²]	[MHz/cm ²]	[C/cm ² /year] at 10 ⁶ gain
Barrel-DIRC			
at upstream rim	60	5.6	28
at readout plane	1.7	0.16	0.8
Endcap DIRC			
TOP	19	1.9	9.6
focussing	7.5	0.76	3.8

- MCP usage probably possible for Barrel DIRC
- lifetime issue is very critical for Endcap DIRC
 - Could we use only photons of a narrow UV band?
 - alternative sensors?

Albert Lehmann