

Review of Solidstate Photomultiplier

Developments by CPTA & Photonique SA

Victor Golovin – Center for Prospective Technologies & Apparatus (CPTA) & David McNally - Photonique SA

Overview

• SSPMs development & status

• Support electronics

Outlook

PHOTONIQUE SA Advanced Solutions in Photon Detection

n⁺ p p⁺ Structure for Visible Light Applications

Trench Architecture

- \rightarrow High fill / geometric factor
- \rightarrow Low optical cross talk
- \rightarrow Low excess noise
- → Uniform Electric field

Visible Light Sensor Line-Up (2008)

Sensor Area	Micro-cell size	Micro-cell count	Geometric Factor
1mm ²	43µm	556	~60%
4.4mm ²	50µm	1764	>70%
9.0mm ²	33µm	8100	>60%

NEW 2009: 2.5 x 2.5 mm 43µm cell size ~70%

CPTA Center for Prospective Technologies & Aparatus

Performance Evolution 2005 - 2009

2005:
$$V_b = \sim 100V$$
; $V_{ov} = V_{bias} - V_b$ up to 4Vor 4% of V_b 2007: $V_b = \sim 17V$; $V_{ov} =$ up to 8Vor 45% of V_b 2009: $V_b = \sim 28V$; $V_{ov} =$ >10V and Gain ~1.4 x 10⁶ in 50ns gate

Optical Cross-Talk

Trench architecture significantly reduces optical cross talk and allows for improved tuning of readout threshold

(*) Y. Musienko – Advances in multipixel Geiger-mode avalanche photodiodes (silicon photomultipliers); to be published in NIM A (08)

Quenching Resistor

Note: Micro-cell capacitance ~100fF ; "Optimal" value for off-the-shelf: ~1M Ω

©2009 – Photonique SA (DMC)

Temperature Stability of Signal Amplitude (I)

 $Amplitude_{Signal} = N_{Photons} \times PDE(T) \times Gain(T)$

Wide V_{op} range results in reduced slope in the **PDE vs. Bias** and **Gain vs. Bias** curves.

(*): **SSPM_050701GR**

©2009 – Photonique SA (DMC)

Temperature Stability of Signal Amplitude (II)

A wide V_{op} range over V_b reduces temperature dependence of signal amplitude

p⁺p n⁺ (UV/Blue): 2008

- Significantly improved implementation of this structure
- Still fighting against dark counts: 1 ~ 3 MHz / mm²
- Working on wavelength shifter enhanced devices for deep UV applications

Readout & Support Electronics

We are developing a comprehensive set of readout solutions

These are available:

- → Turn-key
- → Customized
- ➔ Under license

PHOTONIQUE SA Advanced Solutions in Photon Detection

CPTA Center for Prospective Technologies & Aparatus

Readout & Support Electronics

Above for Dual Channel ⊕ Coincidence Unit

Outlook

SSPMs - Core sensor developments:

- Higher cell density with peak PDE $\geq 40\%$
- Noise / Dark-count rate reduction
- Small area devices
- Improved sensor packages
- Peltier cooled solutions

SSPM support infrastructure:

- Modular electronics solutions
- Light concentration and focusing

Thank you for your attention

Photonique SA ch du Grand-Puits 38 1217 Meyrin Switzerland

www.photonique.ch	
info@photonique.ch	
+41 22 777 7357	
+41 22 782 3718	
photonique_sa	